Contents:

Special Issue on Smart Manufacturing in Energy Intense Process Industries
Guest Editors: Yinlun Huang and Thomas F. Edgar

Overview

1 On the Intensification of Natural Gas-Based Hydrogen Production Utilizing Hybrid Energy Resources—Patricia A. Pichardo and Vasilios I. Manousiouthakis

25 Dynamic Modeling and Explicit Control of a PEM Water Electrolysis Process—Gerald S. Ogumerem and Efstratios N. Pistikopoulos

44 Stochastic Programming Approach versus Estimator-Based Approach for Sensor Network Design for Maximizing Efficiency—Parvizi Shei, Umita Dawkar, and Debangsu Bhattacharyya

61 Data-Based Nonlinear Model Identification in Economic Model Predictive Control—Laura Giuliani and Helen Durand

110 Proactive Automation of a Batch Manufacturer in a Smart Grid Environment—B. Westberg, D. Machalek, S. Denton, D. Sellers, and K. Powell

132 Reliability of C-H-O Symbiosis Networks under Source Streams Uncertainty—Rossi, Mokhtar, and Mahmoud M. El-Halwagi

154 Data-Driven Modeling and Analysis of Energy Efficiency of Geographically Distributed Manufacturing—Aida Amini-Ranbarsht, Sawyer Smith, Halit Akgun, and Yinlun Huang

177 An Internet of Things for Manufacturing (IoTM) Enterprise Software Architecture—Vinh Nguyen and Andrew Dugenske
Editorial Objectives

Smart and Sustainable Manufacturing Systems is published online by ASTM International, a nonprofit technical organization that develops and publishes voluntary consensus standards and related information for materials, products, systems, and services. Contributions are peer reviewed prior to publication.

Purpose and Scope

This journal fosters transdisciplinary research that crosses the boundaries of information science, systems engineering and design, manufacturing, and product life cycle with a focus on how to make manufacturing systems smarter and sustainable.

Editor-in-Chief

Dr. Sudarsan Rachuri
Advanced Manufacturing Office
Office of Energy Efficiency and Renewable Energy
Department of Energy
Washington, DC, USA

Associate Editors

Dr. Derek Ceglarek
University of Warwick, Coventry, UK

Prof. Matthew Doolan
The Australian National University, Canberra, Australia

Dr. Karl R. Haapala
Oregon State University, Corvallis, OR, USA

Dr. Yinlin Huang
Wayne State University, Detroit, MI, USA

Dr. Jacqueline Issacs
Northeastern University, Boston, MA, USA

Dr. Soundar Kumara
Pennsylvania State University, University Park, PA, USA

Dr. Sankaran Mahadevan
Vanderbilt University, Nashville, TN, USA

Prof. Lihong Qiao
Beihang University, Beijing, China

Prof. Shozo Takata
Waseda University, Tokyo, Japan

Prof. Roberto Teti
Università degli Studi di Napoli Federico II, Napoli, Italy

Dr. Manoj Kumar Tiwari
Indian Institute of Technology, Kharagpur, India

Dr. Tetsuo Tomiyama
Cranfield University, Cranfield, UK

Dr. Li Zheng
Tsinghua University, Beijing, China

Editorial Services

Sara Welliver
Supervisor, Peer Review Services
J&J Editorial Services
201 Shannon Oaks Cir #124
Cary, NC 27511, USA
Tel: 919-650-1459, ext. 210
E-mail: astm@jeditorial.com

Editorial Board Members

Dr. Fazeleena Badurdeen
University of Kentucky
Lexington, KY, USA

Dr. Abdelaziz Boursa
Qatar University
Doha, Qatar

Prof. Alexander Brodsky
George Mason University
Fairfax, VA, USA

Dr. LiYing Cui
Starbucks Coffee Company
Seattle, WA, USA

Dr. Bryony DuPont
Oregon State University
Corvallis, OR, USA

Prof. Sebbi Foufou
Doha, Qatar

Prof. Pasquale Franciosa
University of Warwick
Coventry, UK

Dr. Robert Gao
The University of Connecticut
Storrs, CT, USA

Dr. Moneer Helu
NIST
Gaithersburg, MD, USA

Prof. Sanjay Jain
George Washington University
Washington, DC, USA

Prof. I. S. Jawahir
University of Kentucky
Lexington, KY, USA

Dr. Sagar V. Kamath
Northeastern University
Boston, MA, USA

Prof. Jay Kim
Hanyang University
Seoul, South Korea

Dr. Minna Lanz
Tampere University of Technology
Tampere, Finland

Dr. Kincho H. Law
Stanford University
Stanford, CA, USA

Dr. Mahesh Mani
NIST
Gaithersburg, MD, USA

Dr. Raju Mattikallal
The Boeing Company
Seattle, WA, USA

Dr. Michael W. McKittrick
U.S. Department of Energy
Washington, DC, USA

Dr. Shreyes N. Melkote
Georgia Institute of Technology
Atlanta, GA, USA

Dr. Laura Pullum
Oak Ridge National Laboratory
Oak Ridge, TN, USA

Prof. P. V. M. Rao
Indian Institute of Technology Delhi
New Delhi, India

Dr. Heather Reed
Thorton Tomasetti
New York, NY, USA

Dr. Upal Roy
Syracuse University
Syracuse, NY, USA

Dr. Christopher J. Saldana
Georgia Institute of Technology
Atlanta, GA, USA

Prof. K. Senthilkumar
Indian Institute of Technology
Chennai, India

Dr. Gopalasamudram R
Sivarakumar
Cognizant Technology Solutions
Teaneck, NJ, USA

Prof. Eswaran Subramanian
Carnegie Mellon University
Pittsburgh, PA, USA

Dr. Dawn Tibus
University of Michigan
Ann Arbor, MI, USA

Dr. Conrad S. Tucker
Pennsylvania State University
University Park, PA, USA

Dr. Anchita Williamson
NJ, USA

Dr. Paul William Withrell
NIST
Gaithersburg, MD, USA

Lang Yuan
GE Global Research

Dr. Bicheng Zhu
H.A. Automotive Systems Inc.
Troy, MI, USA

Advisory Board Members

Dr. Rakesh Agrawal
Purdue University
West Lafayette, IN, USA

Dr. Dean Bartles
UL LABS
Chicago, IL, USA

Dr. Gaël Berkoz
Ford Motor Company
Dearborn, MI, USA

Prof. Jian Cao
Northwestern University
Evaston, IL, USA

Dr. S. K Gupta
University of Maryland
College Park, MD, USA

Dr. Timothy G. Gutowski
Massachusetts Institute of Technology
Cambridge, MA, USA

Dr. Gregory A. Harris
U.S. Army
Huntsville, AL, USA

Dr. Rob Ivester
U.S. Department of Energy
Washington, DC, USA

Prof. Mark Johnson
North Carolina State University
Raleigh, NC, USA

Dr. Pramod Khargonekar
University of California, Irvine
Irvine, CA, USA

Dr. Thomas Kurfess
Georgia Institute of Technology
Atlanta, GA, USA

Dr. Peter Luh
University of Connecticut
Storrs, CT, USA

Dr. Bahram Ravani
University of California
Davis, CA, USA

Dr. William C. Regli
University of Maryland
College Park, MD, USA

Dr. S. Sadagopan
International Institute of Information Technology
Bangalore, India

Dr. Vijay Srinivasan
NIST
Gaithersburg, MD, USA

Dr. Ram D. Siram
NIST
Gaithersburg, MD, USA

Dr. Fred van Houten
University of Twente
 Enschede, The Netherlands

Dr. Albert J. Wawer
NIST
Gaithersburg, MD, USA

Smart and Sustainable Manufacturing Systems (E-ISSN 2572-3928, print ISSN 2520-6478) is published online by ASTM International. The views expressed in this journal are not those of ASTM International. The data and opinions appearing in the published material were prepared by and are the responsibility of the contributors, not of ASTM International. Copyright © 2018 by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. All rights reserved—This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media without the written consent of the publisher.

Subscriptions include online access. Individual subscriptions: $252.00 for 1 year online access. Institutional subscriptions (one geographic site via IP access): $422.00 for 1 year online access. Multi-site access also available: please contact sales@astm.org or call 1-877-909-ASTM. To subscribe, please send prepaid order to ASTM International, Customer Service, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 or visit www.astm.org

Photocopy Rights: Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by ASTM International provided that the appropriate fee paid is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

POSTMASTER: Send address change to ASTM International—MPC, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

Printed in the USA

Visit our website: www.astm.org
Overview

Special Issue on Smart Manufacturing in Energy Intense Process Industries

Chemical manufacturing is one of the most energy intensive manufacturing sectors in the U.S. Over the past decades, the energy efficiency of this sector has significantly improved. However, new methods, technologies, and tools are sought for further energy efficiency gains with less environmental impact. In recent years, smart manufacturing has become an emerging area of research and practice. It promotes the use of data and information technology, advanced computer-aided design, computer control, sensor networks, and production management software to improve manufacturing sustainability.

This special issue contains eight invited papers that demonstrate state-of-the-art research in the key areas of smart manufacturing in the energy intensive process industries. The paper contributed by Pichardo and Manousiouthakis describes their investigation on natural gas-based hydrogen production systems utilizing hybrid energy sources and introduces an effective process synthesis methodology utilizing the Infinite DimEnsionAl State-space (IDEAS) technique. The methodology has been tested for simultaneously synthesizing a hydrogen production process and its associated heat exchanger network system. The derived intensified system demonstrated a significant reduction of the use of methane as a fuel source, thus enabling the use of concentrated solar power based renewable energy for hydrogen production. An alternative technical approach is through electrolysis using renewable resources. Electrolysis is the process of using electricity to split water into hydrogen and oxygen. Ogumerem and Pistikopoulos introduce an optimal operating strategy for the Proton Exchange Membrane (PEM) water electrolysis process using the Parametric Optimization and Control (PAROC) framework. Their method employs a multi-parametric model predictive control (mp-MPC) technique, which could avoid online optimization at every time step because the optimization was performed once and offline. By their method, the high cost of operation due to its energy intensity can be greatly reduced.

In addition to the paper by Ogumerem and Pistikopoulos, there are also three other papers in this issue that propose different process control approaches. In process plants, sensor placement is critical to real-time information collection. Sen et al. develop a unique stochastic programming based algorithm for optimal determination of the numbers, locations, and types of sensors in a large-scale process with the estimator-based control system. The algorithm has been successfully implemented in an acid gas removal process unit as part of an integrated gasification combined cycle (IGCC) power plant with pre-combustion CO₂ capture. Giuliani and Durand introduce a new economic model predictive control (EMPC) design method, where process data gathered from sensors will be used to develop a physically-meaningful empirical model for a process control. A chemical process example was used to demonstrate the potential of a data-gathering EMPC methodology. In a control hierarchy, production scheduling is a process of arranging, controlling and optimizing work.
and workloads in a manufacturing process. The paper by Westberg et al. studies a production scheduling problem with batch manufacturers in a smart grid environment. In their work, the authors analyze how batch process facilities are well suited to respond to power grid changes as they function in a manner that allows for variable production scheduling. Additionally, the utilization of on-site energy storage is discussed for how it could be managed to reduce peak demand at necessary times. They demonstrate that fairly simple automation could drastically lessen an industrial facility's impact on the grid.

Energy efficiency improvement with significant reduction of greenhouse gas (GHG) in manufacturing regions has received increasing attention in the past decade. Mukherjee and El-Halwagi describe a network design approach for hydrocarbon processing involving multiple manufacturing sectors located in proximity. The system, which is called the carbon-hydrogen-oxygen symbiosis network (CHOSyN), was designed using first-principle-based mass and energy balance. This methodology can be applied in the design stage to ensure safety, reliability as well as cost efficiency of the entire network. Aiming at investigating the energy efficiency and CO₂ emission in geographically distributed manufacturing regions, Amini-Rankouhi et al. introduce a general data-driven modeling and analysis methodology. Their paper demonstrates that an integrated use of the openly accessible data from different data sources could generate new information about energy efficiency and environmental impact in different manufacturing regions in the U.S., and a case study provides a detailed model-based analysis of energy consumption, energy loss, and CO₂ emission of 15 energy intensive manufacturing sectors in different states as well as in counties.

In the manufacturing industry, the Internet of Things (IoT) is emerging as a technology promising a powerful foundation for plants to identify ways to monitor, analyze, and adjust production processes effectively and to increase efficiencies, profits, and customer satisfaction. The paper contributed by Nguyen and Dugenske proposes a low-cost architecture based upon the publish-and-subscribe standard for implementation of IoT in manufacturing systems. The architecture is a nonintrusive and flexible system, which is being enhanced for wider applications.

Taken collectively, the papers in this special issue add considerable value to readers in the field of smart manufacturing toward industrial sustainability. Researchers in both academic and industrial organizations will benefit from this collection of papers, which is aimed at enhancing the impact of current research.

Producing this special issue required significant efforts from authors, reviewers, and the publication team, which is gratefully acknowledged. We would especially like to thank Dr. Sudarsan Rachuri, Advanced Manufacturing Office, Office of Energy Efficiency and Renewable Energy of DOE, for his guidance in the development of this issue. We are also thankful for the assistance provided by ASTM staff members, Alyssa Conaway and Sara Welliver. In particular, we acknowledge the financial support from the U.S. National Science Foundation through grants (Award Nos. 1140000, 1642400 and 1629385).

Guest Editors:
Yinlun Huang
Wayne State University

Thomas F. Edgar
The University of Texas at Austin
Information for Authors

For details regarding paper submission go to https://mc04.manuscriptcentral.com/astm-ssms.

The subject matter must not be of a speculative nature and the contents must not include materials of an advertising nature. The paper must not be seriously defective as to literary form and structure, continuity of thought, and clarity of expression. The substance of the paper should not have been published previously in the open literature.

Authors preparing papers for submittal should observe the conventions of style explained in the ASTM Style Manual. Since the journal does not request page charges, the author is expected to conform to these standard conventions for style. SI units are to be used throughout; if data were not measured in SI units, a note should appear to that effect and the original units should be included in parentheses after the SI units.

IN APPRECIATION

The high quality of the papers that appear in this publication is a tribute not only to the obvious efforts of the authors represented but to the unheralded, though essential, efforts of their reviewers. It is to the reviewers dedication to upholding the high standards of their profession that this note pays tribute. On behalf of ASTM International and the authors as well, we acknowledge with appreciation their important contribution to the success of this journal.
Contents:

Special Issue on Smart Manufacturing in Energy Intense Process Industries
Guest Editors: Yinlun Huang and Thomas F. Edgar

Overview

1 On the Intensification of Natural Gas-Based Hydrogen Production Utilizing Hybrid Energy Resources—Patricia A. Pichardo and Vasilios I. Manousiouthakis

25 Dynamic Modeling and Explicit Control of a PEM Water Electrolysis Process—Gerald S. Ogumerem and Efstratios N. Pistikopoulos

44 Stochastic Programming Approach versus Estimator-Based Approach for Sensor Network Design for Maximizing Efficiency—Pulibh Srik, Urmila Dwekar, and Debangsu Bhattacharyya

61 Data-Based Nonlinear Model Identification in Economic Model Predictive Control—Laura Giuliani and Helen Durand

110 Proactive Automation of a Batch Manufacturer in a Smart Grid Environment—B. Westberg, D. Machakik, S. Denton, D. Sellers, and K. Powell

132 Reliability of C-H-O Symbiosis Networks under Source Streams Uncertainty—Rajal Muhfrjee and Mahmoud M. El-Hallwagi

154 Data-Driven Modeling and Analysis of Energy Efficiency of Geographically Distributed Manufacturing—Aida Amini-Roknabadi, Sawyer Smith, Halit Akgun, and Yinlun Huang

177 An Internet of Things for Manufacturing (IoTfM) Enterprise Software Architecture—Vinh Nguyen and Andrew Dugenske