Contents:

Special Issue on Recent Advances in Hot Deformation of Materials, Part 2

Guest Editor: S. V. S. Narayana Murty

Overview

REVIEW PAPER

1 Dynamic Recrystallization in Titanium Alloys: A Comprehensive Review—Ritam Chattopadhyay, S. V. S. Narayana Murty, and Alankar Alankar

43 Influence of Deformation Mode on Hot Deformation Behavior of CP Titanium—C. N. Athreya, S. Suwas, and V. Subramanyam Sarma

57 High-Temperature Deformation Behavior of 718Plus: Consideration of γ′ Effects—Uğur Can Gurbuz, Jose Maria Cabreia, Jessica Colva, Abdelkarim Redjaima, and Jaffer Ghandeharizadeh

75 Peculiarities of Microstructure Evolution and Property Changes of Titanium Alloys In Situ during Electric Forging—Lennart Kimmel

89 A Study of Recrystallization Behavior of Two Ni-Cu–Containing High-Strength Steels with Different Mn Contents—Atul Kumar, T. V. V. S. Varo Prasad, M. Nazwer, K. Gopinath, and R. Botamuthukrishnan

101 Effect of Multidirectional Forging with Decreasing Temperature on the Microstructure and Microhardness of the Aluminum-Magnesium-Scandium-Zirconium Alloy—O. S. Sitdikov, E. V. Antsikratova, M. A. Muznurova, and M. V. Markushov

117 Study on Hot Deformation Behavior of High Carbon Low Alloy Steel by Constitutive and ANN Modeling and Development of Processing Maps—Deepak Kumar, Sumit Kumar, and S. K. Nath

134 Understanding Hot Workability and Flow Stress Prediction through Processing Map with Microstructural Correlation for HYBS Steel—Sanjeev Kumar, S. K. Rajput, Niranjan Kumar, and S. K. Nath


(Contents continued on back cover)
Contents:

Special Issue on Recent Advances in Hot Deformation of Materials, Part 2

Guest Editor: S. V. S. Narayana Murty

Overview

REVIEW PAPER

1 Dynamic Recrystallization in Titanium Alloys: A Comprehensive Review—Ritam Chatterjee, S. V. S. Narayana Murty, and Alankar Alankar

43 Influence of Deformation Mode on Hot Deformation Behavior of CP Titanium—C. N. Athreya, S. Suwas, and V. Subramanayan Sarma

57 High-Temperature Deformation Behavior of 718Plus: Consideration of γ′ Effects—Utkudeniz Ozturk, Jose Maria Cabrera, Jessica Calvo, Abdelkrim Redjaïmia, and Jaâfar Ghanbaja

75 Peculiarities of Microstructure Evolution and Property Changes of Titanium Alloys In Situ during Electric Forging—Lembit Kommel

89 A Study of Recrystallization Behavior of Two Ni-Cu–Containing High-Strength Steels with Different Mn Contents—Atul Kumar, T. V. V. S. Vana Prasad, M. Navzer, K. Gopinath, and D. V. Kandadhe

101 Effect of Multidirectional Forging with Decreasing Temperature on the Microstructure and Microhardness of the Aluminum-Magnesium-Scandium-Zirconium Alloy—O. S. Sitdikov, E. V. Avtokratova, M. A. Murzinova, and M. V. Markushev

117 Study on Hot Deformation Behavior of High Carbon Low Alloy Steel by Constitutive and ANN Modeling and Development of Processing Maps—Deepak Kumar, Sumit Kumar, and S. K. Nath

134 Understanding Hot Workability and Flow Stress Prediction through Processing Map with Microstructural Correlation for HYBS Steel—Sanjeev Kumar, S. K. Rajput, Niranjan Kumar, and S. K. Nath


(Contents continued on back cover)
Contributions are peer reviewed prior to publication.

The journal publishes high-quality, original articles, including full papers, review papers, and technical notes, on both theoretical and practical aspects of the processing, structure, properties, and performance of materials used in mechanical, transportation, aerospace, energy systems, and medical devices. These materials include metals and alloys, glass and ceramics, polymers, composite materials, textiles, and nanomaterials. The journal covers topics related to the integrity of materials which encompasses mechanical testing, fatigue and fracture, corrosion, wear, and erosion, as well as the integrity of components and systems such as rolling element bearings, piping and pressure vessels, fasteners, space technology, and nanotechnology. The journal publishes articles on both qualitative and quantitative methods used to characterize materials including all forms of microscopy, chemical analysis, and nondestructive evaluation.

www.astm.org Printed in the USA.
INFORMATION FOR AUTHORS
For details regarding paper submission go to http://mc04.manuscriptcentral.com.

The subject matter must not be of a speculative nature and the contents must not include materials of an advertising nature. The paper must not be seriously defective as to literary form and structure, continuity of thought, and clarity of expression. The substance of the paper should not have been published previously in the open literature.

Authors preparing papers for submittal should observe the conventions of style explained in the ASTM Style Manual. Since the journal does not request page charges, the author is expected to conform to these standard conventions for style.

SI units are to be used throughout; if data were not measured in SI units, a note should appear to that effect and the original units should be included in parentheses after the SI units.

IN APPRECIATION OF THE REVIEWERS
The high quality of the papers that appear in this publication is a tribute not only to the obvious efforts of the authors represented but to the unheralded, though essential, efforts of their reviewers. It is to the reviewers’ dedication to upholding the high standards of their profession that this note pays tribute. On behalf of ASTM International and the authors as well, we acknowledge with appreciation their important contribution to the success of this journal.
Overview

Special Issue on Recent Advances in Hot Deformation of Materials, Part 2

This overview for the second volume of this special issue on *Recent Advances in Hot Deformation of Materials* is being written at a time when the whole world is struggling with SARS-COVID-19. In these unprecedented times, let all of us in the scientific community hope that the virus spread is contained and a vaccine is found as soon as possible to protect the humanity.

The first part of this two-part special issue covered 24 papers including two review articles. The remaining 18 papers that were peer reviewed and accepted for publication appear in this second volume. The areas covered in this special issue include hot deformation of steels, aluminum alloys and their composites, magnesium alloys, titanium alloys, superalloys, and simulation of thermomechanical processing. This issue starts with a review article on dynamic recrystallisation in Titanium alloys from the group of Prof. Alankar of the Indian Institute of Technology Bombay. The next five papers cover the hot deformation of materials and its effect on the microstructure evolution in different alloy systems. The materials covered include commercially important alloys such as CP-Ti and IN718Plus™. The next eight papers present the hot workability of materials through constitutive flow analysis and development of processing maps for different commercial and experimental alloys. The results of these papers will be useful to predict the possibility of flow localization and fracture during hot deformation of alloys studied. These publications add important test data to the literature on hot deformation of materials. This is followed by a paper on the comparison of predictive capability of various constitutive equations for aluminum composites. The detailed analysis presented in this paper on the applicability of different constitutive models for aluminum matrix composites will be useful for researchers to apply for their materials of study. The last three papers are on related areas of hot deformation viz. grain stability in friction stir welds, molecular dynamics simulation of bending of a Ni nanowire and thermoforming of PMMA sheet. Therefore, this special issue covers many interesting technologies for the readers on a wide range of topics.

The articles describe the latest advances in the high temperature deformation processing of different types of materials. We sincerely thank both the authors and reviewers for their hard work and dedication. I wholeheartedly thank the ASTM staff dealing with the issues related to the process of publishing an outstanding journal.

S. V. S. Narayana Murty, PhD.
Vikram Sarabhai Space Centre, Trivandrum, India
Editorial Board Member, *Materials Performance and Characterization*