Contents:
Special Issue on Tribochemistry and Tribometry

Guest Editors: Mathias Woydt, Simon Tung, and George Totten

iii Overview

GENERATION FROM LUBRICANTS

191 ZDDP Containing Tribofilms Generated under Sliding Micro Contact and Bearing Test Rig Conditions—Florian Pape, Christian Muhmann, Dieter Lipinsky, Heinrich F. Arlinghaus, and Gerhard Poll

213 Generation of Defined Tribofilms and Their Stability under Slip-Rolling in a 2Disk Test Rig—Mathias Woydt, John-Theodore Burbank, and Dirk Spaltmann

MATERIALS ASPECTS

252 The Influence of Boronizing Temperature on Microstructure and Wear Resistance in Low-Carbon Steels—Undrakh Mishigdorzhiyn and Igor Sizov

266 Electrochemical Characterization of a Nickel-Phosphorus Coating on Diamond Grits—Lian Ma, XiHua He, Alex Fang, and Hong Liang

(Contents continued on back cover)
Materials Performance and Characterization is published online by ASTM International, a nonprofit technical organization that develops and publishes voluntary consensus standards and related information for materials, products, systems, and services. Contributions are peer reviewed prior to publication.

Purpose and Scope

The journal publishes high-quality, original articles, including full papers, review papers, and technical notes, on both theoretical and practical aspects of the processing, structure, properties, and performance of materials used in mechanical, transportation, aerospace, energy systems, and medical devices. These materials include metals and alloys, glass and ceramics, polymers, composite materials, textiles, and nanomaterials. The journal covers topics related to the integrity of materials which encompasses mechanical testing, fatigue and fracture, corrosion, wear, and erosion, as well as the integrity of components and systems such as rolling element bearings, piping and pressure vessels, fasteners, space technology, and nanotechnology. The journal publishes articles on both qualitative and quantitative methods used to characterize materials including all forms of microscopy, chemical analysis, and nondestructive evaluation.

Editorial Objectives

Materials Performance and Characterization is provided with the following opportunities:

- Original articles including full papers, review papers, and technical notes
- Purchase of individual papers for $25.00 each
- Access to the electronic tables of contents
- Download of individual papers
- Search of papers and authors
- View abstracts
- View the table of contents
- IP access is available

Editorial Board

- Dr. Ing. Menahem Bamberger
 Technion-Israel Institute of Technology
 Haifa, Israel

- Dr. Lutz-Michael Berger
 Fraunhofer Institute for Ceramic Technologies and Systems IKTS
 Dresden, Germany

- Rodney Boyer
 RBTI Consulting
 Issaquah, WA USA

- Prof. Lauralice Canale
 EESC-Universidade de São Paulo
 São Carlos, SP Brazil

- Mr. Brian Cochran
 Wabash, IN USA

- Dr. Ana Sofia C. M. D’Oliveira
 Universidade Federal de Paraná
 Curitiba, PR Brazil

- Dr. Richard J. Fields
 Grayson, GA USA

- Mr. Robert J. Glodowski
 East Metals North America LLC
 Pittsburgh, PA USA

- Dr. Stephen M. Graham
 United States Naval Academy
 Annapolis, MD USA

- Dr. Jianfeng Gu
 Shanghai Jiao Tong University
 Shanghai, China

- Dr. Nikhil Gupta
 New York University
 Brooklyn, NY USA

- Dr. Mohamed Hamed
 McMaster University
 Hamilton, ON Canada

- Dr. Volker Heuer
 ALD Vacuum Technologies GmbH
 Hanau, Germany

- Dr. W. Steven Johnson
 Georgia Institute of Technology
 Atlanta, GA USA

- Dr. Toshiharu Kazama
 Muroran Institute of Technology
 Hokkaido, Japan

- Prof. Dr.-Ing Olaf Kessler
 University of Rostock
 Rostock, Germany

- Dr. Fred Klaessig
 Pennsylvania Bio Nano Systems Doylestown, PA USA

- Dr. Nikolai Kobasko
 Technologies Inc.
 Akron, OH USA

- Dr. Antti S. Korhonen
 Aalto University of Science and Technology
 Aalto, Finland

- Dr. Hong Liang
 Texas A&M University
 College Station, TX USA

- Dr. Stephen Liu
 Colorado School of MinesGolden, CO USA

- Dr. Roberto Lopez-Anido
 University of Maine
 Orono, ME USA

- Dr. Reto Lugibihl
 RMS Foundation
 Bettlach, Switzerland

- Dr. Jianbin Luo
 Tsinghua University
 Beijing, China

- Prof. Xinmin Luo
 Jiangsu University
 Zhenjiang, Jiangsu China

- Dr. Lemmy Meekisho
 Portland State University
 Portland, OR USA

- Dr. Rafael David Mercado-Solis
 Universidad Autonoma de Nuevo Leon
 Nuevo Leon, Mexico

- Ms. Marybeth Miceli
 Miceli Infrastructure Consulting, LLC
 Los Angeles, CA USA

- Dr. Rosa Simencio Otero
 Universidade de São Paulo
 São Carlos, Brazil

- Dr. K. Narayan Prabhu
 National Institute of Technology
 Karnataka State, India

- Barbara Rivolta
 Politecnico di MilanoMilano, Italy

- Dr. Jeremy Robinson
 University of Limerick
 Limerick, Ireland

- Dr. Satyam Sahay
 Johns Hopkins Technology Center
 India

- Dr. Rosa Simencio Otero
 Universidade de São Paulo
 São Carlos, Brazil

- Dr. Preet Singh
 Georgia Institute of Technology
 Atlanta, GA USA

- Dr. Richard D. Siesson, Jr.
 Worcester Polytechnic Institute
 Worcester, MA USA

- Dr. Simon C. Tung
 Tung Innovation Technology Consulting Inc.
 Rochester Hills, MI USA

- Dr. Mathias Woydt
 BAM Federal Institute for Materials Research and Testing
 Berlin, Germany

- Mr. Jingguo (Jing Guo) Zhang
 Shanghai HuZhi Advanced Materials & Technology Co., Ltd.
 Shanghai, China

SCOPE

The journal publishes high-quality, original articles, including full papers, review papers, and technical notes, on both theoretical and practical aspects of the processing, structure, properties, and performance of materials used in mechanical, transportation, aerospace, energy systems, and medical devices. These materials include metals and alloys, glass and ceramics, polymers, composite materials, textiles, and nanomaterials. The journal covers topics related to the integrity of materials, which encompasses mechanical testing, fatigue and fracture, corrosion, wear, and erosion, as well as the integrity of components and systems such as rolling element bearings, piping and pressure vessels, fasteners, space technology, and nanotechnology.

The journal publishes articles on both qualitative and quantitative methods used to characterize materials, including all forms of microscopy, chemical analysis, and nondestructive evaluation.

PERIODICALS

Printed in the USA

ASTM International’s Materials Performance and Characterization is ONLINE.

TAKE ADVANTAGE OF THESE BENEFITS:

- Search Papers & Authors
- View Abstracts
- View Table of Contents
- Download Individual Papers

Current subscribers receive online access.

Non-subscribers can download individual papers for $25.00 each.

IP access is available. FOR INFORMATION VISIT: www.astm.org

Materials Performance and Characterization (E-ISSN 2165-3992, print ISSN 2379-1365) is published online by ASTM International. The views expressed in this journal are not those of ASTM International. The data and opinions appearing in the published material were prepared by and are the responsibility of the contributors, not of ASTM International. Copyright © 2018 by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media without the written consent of the publisher.

Subscriptions

Include online access. Individual subscriptions: $252.00 for 1 year online access. Institutional subscriptions (one geographic site via IP access): $422.00 for 1 year online access. Multisite access also available; please contact sales@astm.org or call 1-877-909-ASTM. To subscribe, please send prepaid order to ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 or visit www.astm.org.

Photocopy Rights: Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by ASTM International provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

Periodicals postage paid at W. Conshohocken, PA, and at additional mailing offices.

POSTMASTER: Send address change to ASTM International—MPC, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

Printed in the USA

Visit our website: www.astm.org.
Overview

Special Issue on Tribochemistry and Tribometry

This Materials Performance and Characterization Special Issue on Tribochemistry and Tribometry includes thirteen papers with the related topics:

- Materials impact
- Generation from lubricants
- Tribometry

These papers give an introduction to the complexity of interacting surfaces (materials) with lubricants, either additives and/or base oils, and how tribometry evolved to disclose these interactions. The whole tribosystems must be considered, which are composed of two triboelements, the lubricant interface and the surface boundaries.

Tribometry focuses so far on functional properties—like coefficients of friction, wear, and extreme pressure—because these appear in specifications. Several new testing methodologies illuminated in this special issue describe how to generate tribofilms, which determine the functional properties. The generation of tribofilms is seen as a tool to understand the functional mechanisms of additives interacting between each other when forming a triofilm. In order to better understand the “functioning” of the micro-asperities, other quantities are needed. The common (average) friction signal must be combined with contact resistance, acoustic emissions, high resolution friction signal analysis, stroke, etc. These uncommon quantities also enable one to identify the beginning of adhesive failure before it can be seen macroscopically.

Lubricants and additives are tribotested against carbon steels, gears, and ball bearing steels. In reality, the range in alloys is extremely wide, varying by region and from OEM. In consequence, it is important to study and evaluate the tribological response of additives and formulations in respect to a variety of alloys and thin films. For engine efficiency improvement, various approaches include improvements in advanced combustion systems, component system design and handling—such as down-sizing, boosting, and electrification—as well as waste heat recovery systems etc. In this special publication, the fundamentals of tribometry specific to the environments of engine components tribology have been reviewed, together with discussions on the impact of developing vehicle powertrain technologies, surface and material technologies, as well as lubricant and additive technologies on promises of continuing friction and wear reduction trends.

Significant advances have been made in recent years in material development and surface engineering applied to engine components. Light-weight non-ferrous alloy and nano-composites are being incorporated that include a wide range of materials such as thermal sprayed aluminum liners, diamond-like carbon (DLC) coated piston rings, DLC coated roller bearing, and hard nitride coatings for valve train and gear components in gasoline and diesel engines. Both chemical vapor deposited and physical vapor deposited diamond-like coatings begin to find promising applications to engine parts. Carbon film types—from diamond-like carbon to tetrahedral carbon (ta-C) with different sp²/sp³-hybridisation ratios and hydrogen contents—have to be mentioned. Optional, uncoated alternative steel metallurgies, which can be novel in
automotive industries and available on an industrial base, intrinsically reduce friction and enter into focus.
The available piston ring/cylinder liners metallurgies, including types of coatings, are spiraling.

It has to be noted as essential that base fluids blended with high-performance additive packages lubricate
a reliable manifold of different metals in a wide range of operating conditions. These balanced and perform-
ing technologies are questioned by:

- Eco-toxicological legislations,
- Stronger fuel economy targets in combinations with a variety of “biofuels”,
- Downsizing and lightweight approaches that increase Hertzian contact pressures and PV values,
- In parallel, spiraling number of tests for specifications with a shorter lifetime associated with a
 regional fragmentation,
- Prohibition of well known and performing chemicals and materials for toxicological reasons (“sunset
 dates”) calling for substitutions, and
- Required time and cost saving tribological testing methodologies for their identification and
 qualification

Guest Editors
Mathias Woydt
Simon Tung
George Totten
Information for Authors

For details regarding paper submission go to http://mc04.manuscriptcentral.com.

The subject matter must not be of a speculative nature and the contents must not include materials of an advertising nature. The paper must not be seriously defective as to literary form and structure, continuity of thought, and clarity of expression. The substance of the paper should not have been published previously in the open literature.

Authors preparing papers for submittal should observe the conventions of style explained in the ASTM Style Manual. Since the journal does not request page charges, the author is expected to conform to these standard conventions for style. SI units are to be used throughout; if data were not measured in SI units, a note should appear to that effect and the original units should be included in parentheses after the SI units.

IN APPRECIATION

The high quality of the papers that appear in this publication is a tribute not only to the obvious efforts of the authors represented but to the unheralded, though essential, efforts of their reviewers. It is to the reviewers dedication to upholding the high standards of their profession that this note pays tribute. On behalf of ASTM International and the authors as well, we acknowledge with appreciation their important contribution to the success of this journal.
Contents:
Special Issue on Tribochemistry and Tribometry
Guest Editors: Mathias Woydt, Simon Tung, and George Totten

Overview

GENERATION FROM LUBRICANTS

191 ZDDP Containing Tribofilms Generated under Sliding Micro Contact and Bearing Test Rig Conditions—Florian Pape, Christian Muhrmann, David Pahl, Dieter Lipsky, Heinrich F. Arlinghaus, and Gerhard Poll

213 Generation of Defined Tribofilms and Their Stability under Slip-Rolling in a 2Disk Test Rig—Mathias Woydt, John-Theodore Burbank, and Dirk Spaltmann

226 Nanolubrication Mechanisms: Influence of Size and Concentration of CuO Nanoparticles—Salete Martins Alves, Valdicleide Silva e Mello, and Amilton Sinatara

MATERIALS ASPECTS

252 The Influence of Boronizing Temperature on Microstructure and Wear Resistance in Low-Carbon Steels—Undrakh Mishigdorzhiyn and Igor Sizov

266 Electrochemical Characterization of a Nickel-Phosphorus Coating on Diamond Grits—Lian Ma, Xihua He, Alex Fang, and Hong Liang

(Contents continued on back cover)