Contents:

Special Issue on Acceleration of Alloy Design via Physical Process Simulation

Guest Editor: Brian Allen

Overview

293 Comparison of Two Physical Simulation Tests to Determine the No-Recrystallization Temperature in Hot Rolled Steel Plates—C. N. Homsher and C. J. Van Tyne

322 Investigation of Austenite Evolution in Low-Carbon Steel by Combining Thermo-Mechanical Simulation and EBSD Data—Stephan Weyand, Dominik Britz, Daniel Rupp, and Frank Mücklich

365 Effect of Single and Multiple Thermal Cycles on Microstructure and Mechanical Properties of Simulated HAZ in Low Carbon Bainitic Steel—Sanjeev Kumar, S. K. Nath, and Vinod Kumar

421 Improving Steel Processing Through Thermo-Mechanical Simulation Studies—Vinod Kumar
Editorial Objectives

Materials Performance and Characterization is published online by ASTM International, a nonprofit technical organization that develops and publishes voluntary consensus standards and related information for materials, products, systems, and services. Contributions are peer reviewed prior to publication.

Purpose and Scope

The journal publishes high-quality, original articles, including full papers, review papers, and technical notes, on both theoretical and practical aspects of the processing, structure, properties, and performance of materials used in mechanical, transportation, aerospace, energy systems, and medical devices. These materials include metals and alloys, glass and ceramics, polymers, composite materials, textiles, and nanomaterials. The journal covers topics related to the integrity of materials which encompasses mechanical testing, fatigue and fracture, corrosion, wear, and erosion, as well as the integrity of components and systems such as rolling element bearings, piping and pressure vessels, fasteners, space technology, and nanotechnology. The journal publishes articles on both qualitative and quantitative methods used to characterize materials including all forms of microscopy, chemical analysis, and nondestructive evaluation.

Editorial Board

Dr. Ing. Menahem Bamberger
Technion-Israel Institute of Technology
Haifa, Israel

Rodney Boyer
RBT Consulting
Issaquah, WA USA

Prof. Lauralice Canaã
EESC-Universidade de Sao Paulo
Sao Carlos SP Brazil

Mr. Brian Cochran
Wabash, IN USA

Dr. Ana Sofia C. M. D’Oliveira
Universidade Federal do Paraná
Curitiba, PR - Brazil

Dr. Richard J. Fields
Grayson, GA USA

Mr. Robert J. Glogowski
East Metals North America LLC
Pittsburgh, PA USA

Dr. Stephen M. Graham
United States Naval Academy
Annapolis, MD USA

Dr. Nikhil Gupta
New York University
Brooklyn, NY USA

C. Hakan Gür
Middle East Technical University
Ankara, Turkey

Dr. Volker Heuer
ALD Vacuum Technologies GmbH
Hanau, Germany

Dr. W. Steven Johnson
Georgia Institute of Technology
Atlanta, GA USA

Dr. Ing. Olaf Kessler
University of Rostock
Rostock, Germany

Dr. Fred Klaessig
Pennsylvania Bio Nano Systems
Doylestown, PA USA

Dr. Nikolai Kobasko
Technologies Inc.
Akron, OH USA

Dr. Antti S. Korhonen
Aalto University of Science and Technology
Aalto, Finland

Dr. Hong Liang
Texas A&M University
College Station, TX USA

Dr. Stephen Liu
Colorado School of MinesGoldan, CO USA

Dr. Roberto Lopez-Anido
University of Maine
Orono, ME USA

Dr. Reto Luginbühel
RMS Foundation
Bettlach, Switzerland

Dr. Jianbin Luo
Tsinghua University
Beijing, China

Prof. Xinmin Luo
Jiangsu University
Zhenjiang, Jiangsu China

Dr. Lemmy Meekisho
Portland State University
Portland, OR USA

Dr. Rafael David Mercado-Solis
Universidad Autonoma de Nuevo Leon
Nuevo Leon, Mexico

Ms. Marybeth Miceli
Micieli Infrastructure Consulting, LLC
Los Angeles, CA USA

Dr. K. Narayan Prabhu
National Institute of Technology
Karnataka State, India

Barbara Rivolta
Politecnico di Milano
Milano, Italy

Dr. Satyam Sahay
John Deere Technology Center
Mugarpatta City, Pune, India

Prof. Dr.-Ing. hab. Berthold Scholtes
University of Kassel
Kassel, Germany

Dr. Preet Singh
Georgia Institute of Technology
Atlanta, GA, USA

Dr. Richard D. Sisson, Jr.
Worcester Polytechnic Institute
Worcester, MA USA

Dr. Mathias Wydt
BAM Federal Institute for Materials Research and Testing
Berlin, Germany

Mr. Jingguo (Jing Guo) Zhang
Shanghai HuZhi Advanced Materials & Technology Co., Ltd.
Shanghai, China

ASTM International's Materials Performance and Characterization is ONLINE.

Search Papers & Authors: Current subscribers receive online access.
View Abstracts: Non-subscribers can download individual papers for $25.00 each.
View Table of Contents: IP access is available. FOR INFORMATION VISIT: www.astm.org
Download Individual Papers

Materials Performance and Characterization (ISSN 2165-3992) is published online by ASTM International. The views expressed in this journal are not those of ASTM International. The data and opinions appearing in the published material were prepared by and are the responsibility of the contributors, not of ASTM International.

Copyright © 2015 by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media without the written consent of the publisher.

Subscriptions include online access. Individual subscriptions: $245.00 for 1 year online access. Institutional subscriptions (one geographic site via IP access): $410.00 for 1 year online access. Multisite access also available; please contact sales@astm.org or call 1-877-909-ASTM. To subscribe, please send prepaid order to ASTM International—MPC, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 or visit www.astm.org.

Photocopy Rights: Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by ASTM International provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

Periodicals postage paid at W. Conshohocken, Pa., and at additional mailing offices.

POSTMASTER: Send address change to ASTM International—MPC, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

Printed in the USA

Visit our website: www.astm.org.
Overview

Special Issue on Acceleration of Alloy Design via Physical Process Simulation

Materials producers and researchers are continually being pushed by intense competitive pressures to develop and manufacture new products that are stronger, lighter, more formable, and less expensive. To be successful in the marketplace, these new materials must also exhibit additional properties such as weldability, coatability, corrosion resistance, surface appearance, wear resistance, castability, fatigue resistance, energy absorption, and property repeatability. Unfortunately, many of these design goals tend to be mutually incompatible. Alloy and processing strategies which improve strength generally have a negative impact on formability and weldability, whereas strategies to improve mechanical properties typically have a negative impact on overall material cost.

This leaves the materials researcher the difficult task of optimally balancing material properties for each specific end use. Given the number of design goals and process inputs involved, designing a new material becomes a long, daunting, and expensive task. Physical Simulation allows the researcher to reduce the cost and increase the speed of the necessary development work while avoiding the risk and disruption of full scale mill trials.

The 8 peer reviewed articles in this Special Issue on Acceleration of Alloy Design via Physical Process Simulation present an overview and some of the most up to date research on the use of Physical Simulation to speed new and improved materials to market, while simultaneously reducing the cost required to do so. The material covered in this issue will help materials researchers the world over to understand the applications of Physical Process Simulation to material and process development challenges.

We wish to extend a sincere and heartfelt thank you to everyone who was involved in making this publication possible. The first thanks go to the authors who have agreed to freely share the results of their research efforts; however, we also wish to extend our sincere thanks to the reviewers, editors, and publication staff. This Special Issue would not have been possible without their hard work and dedication.

Brian Allen, Ph.D., P.E.
Chief Metallurgist
Dynamic Systems Inc.
Brian.Allen@Gleeble.com
Contents:

Special Issue on Acceleration of Alloy Design via Physical Process Simulation

Guest Editor: Brian Allen

iii Overview

293 Comparison of Two Physical Simulation Tests to Determine the No-Recrystallization Temperature in Hot Rolled Steel Plates—C. N. Homsher and C. J. Van Tyne

322 Investigation of Austenite Evolution in Low-Carbon Steel by Combining Thermo-Mechanical Simulation and EBSD Data—Stephan Weyand, Dominik Britz, Daniel Rupp, and Frank Möckelich

365 Effect of Single and Multiple Thermal Cycles on Microstructure and Mechanical Properties of Simulated HAZ in Low Carbon Bainitic Steel—Sanjeev Kumar, S. K. Nath, and Vinod Kumar

421 Improving Steel Processing Through Thermo-Mechanical Simulation Studies—Vinod Kumar