Contents:

Special Issue on High Temperature Fatigue
Guest Editors: Rafael D. Mercado-Solís
Richard W. Neu

Overview

68 Fatigue Behavior of Nickel Based Super Alloy 718 in a Hot Corrosive Environment—Raghu V. Prakash, Sampath Chincharkar, Jayar Venkata Ramakrishna, Neeta Paulose, S. N. Narendrababu, and S. L. Mannan

84 Creep-Fatigue-Environment Crack Tip Kinetics of Ni-Base Superalloys—Jeffery L. Evans

91 Influence of Control Mode on Thermomechanical Fatigue Testing of Circumferentially-Notched Specimens—P. Fernandez-Zelaia and R. W. Neu

110 Coupled Fatigue Crack Initiation and Propagation Model Utilizing a Single Blunt Notch Compact Tension Specimen—Scott G. Keller and Ali P. Gordon

137 A Recent Development in Creep-Fatigue Testing—Vallappa Kalyanasundaram, Stuart Holdsworth, and Ashok Saxena

156 Creep-Fatigue Interaction Models for Grade 91 Steel—Stefan Holmström, Rami Polya, and Warwick Payten

(Contents continued on back cover)
Information for Authors

For details regarding paper submission go to http://mc04.manuscriptcentral.com.

The subject matter must not be of a speculative nature and the contents must not include materials of an advertising nature. The paper must not be seriously defective as to literary form and structure, continuity of thought, and clarity of expression. The substance of the paper should not have been published previously in the open literature.

Authors preparing papers for submission should observe the conventions of style explained in the ASTM Style Manual. Since the journal does not request page charges, the author is expected to conform to these standard conventions for style. SI units are to be used throughout; if data were not measured in SI units, a note should appear to that effect and the original units should be included in parentheses after the SI units.

IN APPRECIATION

The high quality of the papers that appear in this publication is a tribute not only to the obvious efforts of the authors represented but to the unheralded, though essential, efforts of their reviewers. It is to the reviewers dedication to upholding the high standards of their profession that this note pays tribute. On behalf of ASTM International and the authors as well, we acknowledge with appreciation their important contribution to the success of this journal.
Overview

Special Issue on High Temperature Fatigue

High Temperature Fatigue is a topic of great significance in the aerospace, automotive, power generation, petrochemical, and metalworking industries, where safety and reliability are major driving factors for success. The durability of the machinery components that are used or produced by these industries is intimately related to their ability to sustain the cyclic loadings at high temperatures without failure. In addition to mechanically driven fatigue damage, a clear understanding of high temperature phenomena such as creep, surface oxidation, diffusion, and softening plays a key role in the design of new materials and structures that could better withstand fatigue at elevated temperatures. Like in all other areas of engineering, the current level of understanding of high temperature fatigue strongly relies on the synergy between experimental and computational methods. The latter has become increasingly important, particularly when attempting to simulate service conditions of full scale components which may be scaled-down to the experimental level for producing more meaningful results.

This Special Issue on High Temperature Fatigue presents some of the most recent scientific and technological advancements in thirteen peer-reviewed articles of leading experts from eight countries with four articles on creep-fatigue, three on thermomechanical fatigue, two on fatigue crack mechanics and one article each on fatigue at long term high temperature exposures, hot corrosion fatigue, modeling of non-isothermal fatigue and thermal fatigue. The materials covered in this special issue include: nickel-based superalloys, creep-resisting steels, stainless steels and tool steels.

We wish to thank everyone who made this MPC Special Issue possible: authors, reviewers, editors and publication staff for their efforts and continued support. We specially acknowledge Dr. George E. Totten for his valuable guidance and advice in planning and compiling this Special Issue.

Dr. Rafael D. Mercado-Solís
Universidad Autónoma de Nuevo León, México
rafael.mercadosl@uanl.edu.mx

Prof. Richard W. Neu
Georgia Institute of Technology
rick.neu@gatech.edu
Purpose and Scope

The journal publishes high-quality, original articles, including full papers, review papers, and technical notes, on both theoretical and practical aspects of the processing, structure, properties, and performance of materials used in mechanical, transportation, aerospace, energy systems, and medical devices. These materials include metals and alloys, glass and ceramics, polymers, composite materials, textiles, and nanomaterials. The journal covers topics related to the integrity of materials which encompasses mechanical testing, fatigue and fracture, corrosion, wear, and erosion, as well as the integrity of components and systems such as rolling element bearings, piping and pressure vessels, fasteners, space technology, and nanotechnology. The journal publishes articles on both qualitative and quantitative methods used to characterize materials including all forms of microscopy, chemical analysis, and nondestructive evaluation.

Co-Editors

Richard W. Neu
Georgia Institute of Technology
Atlanta, GA USA

George E. Totten
G. E. Totten Associates, LLC
Seattle, WA USA

Editorial Services

Heather Blasco
Supervisor, Peer Review Services
Materials Performance and Characterization Editorial Offices
J&J Editorial Services
320 North Salem Street
Apex, NC 27502, USA
Tel: (919) 267-6831
E-mail: heather@jjeditorial.com

Editorial Board

Dr. Ing. Menahem Bamberger
Technion-Israel Institute of Technology
Haifa, Israel

Rodney Boyer
RBT Consulting
Issaquah, WA USA

Prof. Lauralice Canale
EESC-Universidade de Sao Paulo
Sao Carlos SP Brazil

Mr. Brian Cochran
Wabash, IN USA

Dr. Ana Sofia C. M. D’Oliveira
Universidade Federal do Paraná
Curitiba, PR - Brazil

Dr. Richard J. Fields
Grayson, GA USA

Mr. Robert J. Gadowski
East Metals North America LLC
Pittsburgh, PA USA

Dr. Stephen M. Graham
United States Naval Academy
Annapolis, MD USA

Dr. Nikhil Gupta
New York University
Brooklyn, NY USA

C. Hakam Gür
Middle East Technical University
Ankara, Turkey

Dr. Volker Heuer
ALD Vacuum Technologies GmbH
Hanau, Germany

Dr. W. Steven Johnson
Georgia Institute of Technology
Atlanta, GA USA

Prof. Dr.-Ing Olaf Kessler
University of Rostock
Rostock, Germany

Dr. Fred Klaessig
Pennsylvania Bio Nano Systems
Doylestown, PA USA

Dr. Nikolai Kobasko
Technologies Inc.
Akron, OH USA

Dr. Anitii S. Korhonen
Aalto University of Science and Technology
Aalto, Finland

Dr. Hong Liang
Texas A&M University
College Station, TX USA

Dr. Stephen Liu
Colorado School of Mines
Golden, CO USA

Dr. Roberto Lopez-Anido
University of Maine
Orono, ME USA

Dr. Reto Lugibühel
RMS Foundation
Bettlach, Switzerland

Dr. Jianbin Luo
Tsinghua University
Beijing, China

Prof. Xinxin Luo
Jiangsu University
Zhenjiang, Jiangsu China

Dr. Lemmy Meekisho
Portland State University
Portland, OR USA

Dr. Rafael David Mercado-Solis
Universidad Autonoma de Nuevo Leon
Nuevo Leon, Mexico

Ms. Marybeth Miceli
Miceli Infrastructure Consulting, LLC
Los Angeles, CA USA

Dr. K. Narayan Prabhu
National Institute of Technology
Karnataka State, India

Barbara Rivolta
Politecnico di Milano
Milano, Italy

Dr. Satyam Sahay
John Deere Technology Center
India

Prof. Dr.-Ing. hab. Berthold Scholtes
University of Kassel
Kassel, Germany

Dr. Preet Singh
Georg Institute of Technology
Atlanta, GA, USA

Dr. Richard D. Sisson, Jr.
Worcester Polytechnic Institute
Worcester, MA USA

Dr. Mathias Woydt
BAM Federal Institute for Materials Research and Testing
Berlin, Germany

Dr. Jingguo (Jing Guo) Zhang
John Deere Technology Center
Shanghai, China

ASTM International’s Materials Performance and Characterization is ONLINE.

TAKE ADVANTAGE OF THESE BENEFITS:

- Search Papers & Authors
- View Abstracts
- View Table of Contents
- Download Individual Papers

Current subscribers receive online access.
Non-subscribers can download individual papers for $25.00 each.

IP access is available. FOR INFORMATION VISIT: www.astm.org

Materials Performance and Characterization (ISSN 2165-3992) is published online by ASTM International. The views expressed in this journal are not those of ASTM International. The data and opinions appearing in the published material were prepared by and are the responsibility of the contributors, not of ASTM International.

Copyright © 2014 by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media without the written consent of the publisher.

Subscriptions:

Include online access. Individual subscriptions: $245.00 for 1 year online access. Institutional subscriptions (one geographic site via IP access): $410.00 for 1 year online access. Multisite access also available; please contact sales@astm.org or call 1-877-909-ASTM. To subscribe, please send prepaid order to ASTM International, Customer Service, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 or visit www.astm.org.

Photocopy Rights:

Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by ASTM International provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

Periodicals postage paid at W. Conshohocken, Pa., and at additional mailing offices.

POSTMASTER:
Send address change to ASTM International—MPG, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

Printed in the U.S.A.

Visit our website: www.astm.org.
Contents:
Special Issue on High Temperature Fatigue

Guest Editors: Rafael D. Mercado-Solis
Richard W. Neu

Overview

Creep-Fatigue-Environment Crack Tip Kinetics of Ni-Base Superalloys—Jeffrey L. Evans

Influence of Control Mode on Thermomechanical Fatigue Testing of Circumferentially-Notched Specimens—P. Fernandez-Zelaia and R. W. Neu

Coupled Fatigue Crack Initiation and Propagation Model Utilizing a Single Blunt Notch Compact Tension Specimen—Scott G. Keller and Ali P. Gordon

A Recent Development in Creep-Fatigue Testing—Vallappa Kalyanasundaram, Stuart Holdsworth, and Ashok Saxena

Creep-Fatigue Interaction Models for Grade 91 Steel—Stefan Holmström, Rami Polya, and Warwick Payten

[Contents continued on back cover]