Recent
ASTM Publications

Shear Stability of Multigrade Crankcase Oil, DS 49, $7.75, 05-049000-12

Automotive Gasoline Performance and Information System, STP 510A, $3.00, 04-510100-12

Analysis of the Test Methods for High Modulus Fibers and Composites, STP 521, $30.75, 04-521000-33

Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils, STP 523, $37.50, 04-523000-38

An Analysis of the Literature on Tire-Road Skid Resistance, STP 541, $5.50, 04-541000-37

The Analysis of Slags and Related Oxide-Type Materials, STP 542, $12.75, 04-542000-39
MOVING?

To insure uninterrupted service on your JTE subscription, please notify us at least six weeks before you move.

1. Attach your address label from a recent issue in the space provided opposite. (If label is not available, be sure to give your old address, including Zip Code)

2. Print your name, membership no., and address below. (Be sure to include Zip Code)

3. Mail entire notice to: ASTM Headquarters
 Circulation Dept.
 1916 Race St.
 Phila., Pa. 19103

Name_____________________________ Membership No.________________

New Address__

City________________ State________ Zip Code________

Please print or type the above information

Cover Photo:

The photograph shows a steel I-beam section, coated with a plastic fire protection material, being inserted into Avco Systems Division's unique subscale fire simulation chamber during a test to determine the effectiveness of the coating. The coating is a relatively thin (0.2 to 0.4 in.), weatherable, tough, intumescent epoxy which is designed to provide one to two hour performance time for structural steel when tested according to the ASTM Fire Tests of Building Construction and Materials (E 119-71). The fire chamber conditions have been preset to simulate a fully developed large volume fire in terms of temperature and heat flux. The I-beam section is instrumented with thermocouples which are used in recording the temperature-time history of the specimen throughout the fire test. The test about to be conducted represents a "worst case" situation, that is, a sudden flash fire exposure of maximum magnitude. In this issue of the Journal of Testing and Evaluation, D. P. Crowley, F. L. Tempesta, G. K. Castle, E. B. Belason, and L. J. D'Avanzo discuss on pp. 363-368 the subscale fire test facilities which have been developed for evaluating the thermal response of material test specimens exposed to a variety of fire conditions. The photograph was taken by Avco's David Hoyt.