Geotechnical Testing Journal
Index of Volume 12
1989

Number Month of Issue Page
1 March 1-108
2 June 109-180
3 September 181-260
4 December 261-338

Geotechnical Instrumentation for Monitoring Field Performance by Dunncliff (Pe ters), March, 101
Bowles, J. E.: Discussion of "compaction control and the index unit weight" by Steve J. Pollus, March, 98
Boyce, J. R.: see Anayi, J. T., Boyce, J. R., and Rogers, C. D. F.
Brittle failure: Model studies of pressuremeter testing in soft rock (Haberfield and Johnston), June, 150

A

Abraham, B. M.: see Jose, B. T., Sridharan, A., and Abraham, B. M.
Adsorption: A batch-type testing method for determination of adsorption of gaseous compounds on partially saturated soils (Houston, Kreamer, and Marwig), March, 3
Agar: Chemical impregnation of cohesionless soils (Schneider, Chameau, and Leonards), Sept., 204
Aguirre, M. S., Taha, M. R., Tawfiq, K. S., and Amini, F.: Cohesive soil behavior under random excitation conditions, June, 135
Ameida, M. S. S.: see Davies, M. C. R., Almeida, M. S. S., and Parry, R. H. G.
Amini, F.: see Aguirre, M. S., Taha, M. R., Tawfiq, K. S., and Amini, F.
Ampadu, S. and Tatsuoka, F.: An Automated stress-path control triaxial system, Sept., 238
Anayi, J. T., Boyce, J. R., and Rogers, C. D. F.: Modified Bromhead ring shear apparatus, June, 171
Arman, A.: see Ferrell, R. E., Jr., Arman, A., and Grosch, J. J.
Automated testing: Hollow cylinder tests on natural rock salt (Senseny, Mellegard, and Wagner), June 157
Automation: An automated stress-path control triaxial system (Ampadu and Tatsuoka), Sept., 238

B

Backfills: A large-capacity batch filling water balloon apparatus for deep in-situ density tests (Cooper and Fleming), Sept., 222
Bedding: A technique for reducing membrane penetration and bedding errors (Lo, Chu, and Lee), Dec., 311
Blaney, G. W. and O'Neill, M. W.: Dynamic lateral response of a pile group in clay, March, 22
Book Reviews:
Geotechnical Applications of Remote Sensing and Remote Data Transmission by Johnson and Petterissin (Wiesnet), March, 102

Studies with centrifuge vane and penetrometer apparatus in a normal gravity field (Davies, Almeida, and Parry), Sept., 195
Temperature effect on preconsolidation pressure (Tidfors and Sallfors), March, 93
Coefficient of consolidation: Graphical method for determining the coefficient of consolidation c, from flow-pump permeability test, Dec., 302
Coefficient of volume change: Graphical method for determining the coefficient of consolidation c, from flow-pump permeability test, Dec., 302
Cohesionless soils: Chemical impregnation of cohesionless soils (Schneider, Chameau, and Leonards), Sept., 204
Collapse: Discussion of "Determination of collapse potential of soils" by A. J. Lutnegger and R. T. Saber (Reznik), Sept., 248
Compaction: Discussion of "compaction control and the index unit weight" by Steve J. Pollus (Bowles), March, 98
Cone penetrometer: Studies with centrifuge vane and penetrometer apparatus in a normal gravity field (Davies, Almeida, and Parry), Sept., 195
Consolidation: An automated stress-path control triaxial system (Ampadu and Tatsuoka), Sept., 238
Direct and simple shear testing of two Canadian sensitive clays (Silvestri, Karam, Tonthat, and St-Amour), March, 11
Discussion of "Determination of collapse potential of soils" by A. J. Lutnegger and R. T. Saber (Reznik), Sept., 248
Horizontal and vertical swell pressures from a triaxial test: feasibility study (Johnson), March, 87
Log-log method for determination of preconsolidation pressure (Jose, Sridharan, and Abraham), Sept., 230
Cracking: A procedure for determining volumetric shrinkage of an unsaturated soil (Sibley and Williams), Sept., 181
Creep: Hollow cylinder tests on natural rock salt (Senseny, Mellegard, and Wagner), June, 157

Copyright © 1989 by ASTM International

www.astm.org
Cyclic strain: Pore-water pressure buildup in clean sands because of cyclic straining (Ladd, Dobry, Dutko, Yokel, and Chung), March, 77

Damping: Cohesive soil behavior under random excitation conditions (Asgourg, Taha, Tawfiq, and Amini), June, 135

Davies, M. P.: see Robertson, P. K., Davies, M. P., and Campanella, R. G.

Deformation: Measurements of normal deformations in joints during shear using inductance devices (Fishman and Desai), Dec., 297

Density: A large-capacity batch filling water balloon apparatus for deep in-situ density tests (Cooper and Fleming), Sept., 222

Desai, C. S.: see Fishman, K. E. and Desai, C. S.

Desaturation: A procedure for determining volumetric shrinkage of an unsaturated soil (Sibley and Williams), Sept., 181

Dilatancy: Design of laterally loaded driven piles using a flat dilatometer (Robertson, Davies, and Campanella), March, 30

Dobry, R.: see Ladd, R. S., Dobry, R., Dutko, P., Yokel, F. Y., and Chung, R. M.

Dragdown: The influence of the shape of a pile shoe on a model pile penetrating layered soil (Rowlands), Dec., 317

Dutko, P.: see Ladd, R. S., Dobry, R., Dutko, P., Yokel, F. Y., and Chung, R. M.

Dynamic response: Dynamic behavior of the bumpy road shaking table system (Lee and Schofield), June, 126

Earthquakes:
Dynamic behavior of the bumpy road shaking table system (Lee and Schofield), June, 126

Pore-water pressure buildup in clean sands because of cyclic straining (Ladd, Dobry, Dutko, Yokel, and Chung), March, 77

Education: Use of a centrifuge in geotechnical engineering education (Craig), Dec., 288

Error: A technique for reducing membrane penetration and bedding errors (Lo, Chu, and Lee), Dec., 311

F

Ferrell, R. E., Jr., Arman, A., and Grosch, J. J.: X-ray radiographic investigation of perchloroethylene migration at the Livingston derailment site, June, 119

Fishman, K. E. and Desai, C. S.: Measurements of normal deformations in joints during shear using inductance devices, Dec., 297

Fleming, P. R.: see Cooper, M. R. and Fleming, P. R.

Fragnessy, R. J. and Taylor, T.: Centrifuge modeling for projectile penetration studies, Dec., 281

Fourier analysis: Dynamic behavior of the bumpy road shaking table system (Lee and Schofield), June, 126

Dynamical latera response of a pile group in clay (Blaney and O'Neill), March, 22

G-H

Geogrid reinforcement: Enhancement of the uplift capacity of buried pipelines by the use of geogrids (Benavur), Sept., 211

Gill, J. D.: see Morin, R. H., Olsen, H. W., Nelson, K. R., and Gill, J. D.

Goodings, D. J.: see Santamaria, J. C. and Goodings, D. J.

Grosch, J. J.: see Ferrell, R. E., Jr., Arman, A., and Grosch, J. J.

Haberfield, C. M. and Johnston, I. W.: Model studies of pressuremeter testing in soft rock, June, 150

Hardin, B.: Effect of rigid boundaries on measurement of particle concentration, June, 143

Hazardous waste containment: A batch-type testing method for determination of adsorption of gaseous compounds on partially saturated soils (Houston, Kreamer, and Marwig), March, 3

Hirch, C. C. and Yang, P. C. Y.: The use of proximity transducers for local strain measurements in triaxial tests, Dec. 292

Holtz, R. D.: see Prapaharan, S. Holtz, R. D., and Luna J. D.

Houston, S. L., Kreamer, D. K., and Marwig, R.: A batch-type testing method for determination of adsorption of gaseous compounds on partially saturated soils, March, 3

Howard, A. K.: Minimum test specimen mass for moisture content determination, March, 39

I-J

Index unit weight: Discussion of “compaction control and the index unit weight” by Steve J. Pollus (Bowles), March, 98

In-situ testing: Discussion of “Effects of Borehole fluid on standard penetration test results” by R. B. Seed, L. F. Harder, Jr., and T. L. Youd (Schmertmann), Sept., 250

Interfaces: Measurements of normal deformations in joints during shear using inductance devices (Fishman and Desai), Dec., 297

Johnson, L. D.: Horizontal and vertical swell pressures from a triaxial test: feasibility study, March, 87

Johnston, I. W.: see Haberfield, C. M. and Johnston, I. W.

Joints: Measurement of normal deformations in joints during shear using inductance devices (Fishman and Desai), Dec., 297

K

Kolymbas, D. and Wei W.: A device for lateral strain measurement in triaxial tests with unsaturated specimens, Sept., 227

Kramer, S. L. and Sivaneswaran, N.: A nondestructive, specimen-specific method for measurement of membrane penetration in the triaxial test, March, 50

Kreamer, D. K.: see Houston, S. L., Kreamer, D. K., and Marwig, R.

Krizek, R. J.: see Christopher, B. R., Atmatzidis, K. D., and Krizek, R. J.

L

Laboratory tests: Discussion on “automatic volume change and pressure measurement devices for triaxial testing of soils” by Poul V. Lade (Tatsuoka), Dec., 323

Ladd, R. S., Dobry, R., Dutko, P., Yokel, F. Y., and Chung, R. M.: Pore-water pressure buildup in clean sands because of cyclic straining, March, 77

Lade, P.: Closure on discussion on triaxial testing by Tatsuoka and Osval et al.

Lateral forces: Design of laterally loaded driven piles using a flat dilatometer (Robertson, Davies, and Campanella), March, 30

Lee, F. H. and Schofield, A. N.: Dynamic behavior of the bumpy road shaking table system, June, 126

Liquefaction: Discussion of “Effects of Borehole fluid on standard penetration test results” by R. B. Seed, L. F. Harder, Jr., and T. L. Youd (Schmertmann), Sept., 250

Livingston derailment site: X-ray radiographic investigation of perchloroethylene migration at the Livingston derailment site (Ferrell, Arman, and Grosh), June, 119

Luna, J. D.: see Prapaharan, Holtz, R. D., and Luna, J. D.

Marwig, R.: see Houston, S. L., Kreamer, D. K., and Marwig, R.

Matric suction: Calibration of thermal conductivity sensors for measuring soil suction (Fredlund and Wong), Sept., 188

Melleglgard, K. D.: see Senseny, P. E., Melleglgard, K. D., and Wagner, L. A.

Membrane: A nondestructive, specimen-specific method for measurement of membrane penetration in the triaxial test (Kramer and Sivaneswaran), March, 50

Membrane penetration: A technique for reducing membrane penetration and bedding errors (Lo, Chu, and Lee), Dec., 311

Mercury intrusion technique: Pore size distribution of nonwoven geotextiles (Prapaharan, Holtz, and Luna), Dec. 261

Metastable soils: Discussion of “Determination of collapse of soils” by A. J. Lungren and R. T. Saber (Reznik), Sept., 248
Sridharan, A.: see Jose, B. T., Sridharan, A., and Abraham, B. M.

St-Amour, Y.: see Silvestri, V., Karam, G., Tonthat, A., and St-Amour, Y.

Standard penetration test: Discussion of “Effect of Borehole fluid on standard penetration test results,” by R. B. Seed, L. F. Harder, Jr., and T. L. Youd (Schmertmann), Sept., 250

Strain measurement: A device for lateral strain measurement in triaxial tests with unsaturated specimens (Kolymbas and Wu), Sept., 227

Stress paths: An automated stress-path control triaxial system (Ampadu and Tatsuoka), Sept., 238

Swell pressure: Horizontal and vertical swell pressures from a triaxial test: feasibility study (Johnson), March, 87

T

Taha, M. R.: see Aggour, M. S., Taha, M. R., Tawfiq, K. S., and Amini, F.

Tatsuoka, F.: see Ampadu, S. and Tatsuoka, F.

Tatsuoka, F., Pradhan, T. B. S., and Yoshiie, H.: A cyclic undrained simple shear testing method for soils (Tatsuoka, Pradhan, and Yoshiie), Dec., 269

Torsional shear apparatus: a cyclic undrained simple shear testing method for soils (Tatsuoka, Pradhan, and Yoshiie), Dec., 269

Triaxial equipment: Discussion on “Automatic volume change and pressure measurement devices for triaxial testing of soils” by Poul V. Lade (Tatsuoka), Dec., 323

Triaxial tests: A device for lateral strain measurement in triaxial tests with unsaturated specimens (Kolymbas and Wu), Sept., 227

A nondestructive, specimen-specific method for measurement membrane penetration in the triaxial test (Kramer and Sivaneswaran), March, 50

A nonlinear one-dimensional wave analysis of a triaxial soil specimen (Carroll), March, 45

Horizontal and vertical swell pressures from a triaxial test: feasibility study (Johnson), March, 87

The use of Hall effect semiconductors in geotechnical instrumentation (Clayton, Khatrush, Bica, and Siddique), March, 109

The use of proximity transducers for local strain measurements in triaxial tests (Hird and Yang), 292

The vane cone: a new device for soil shear strength measurement (Youssef), March, 60

U-V

Unconfined compression: Laboratory testing of chemically grouted sand (Christopher, Atmatzidis, and Krizek), June, 109

Unsaturated soils: A device for lateral strain measurements in triaxial tests with unsaturated specimens (Kolymbas and Wu), Sept., 227

Uplift capacity: Enhancement of the uplift capacity of buried pipelines by the use of geogrids (Selvadurai), Sept., 211

V

Vanes: The vaneg (device for soil shear strength measurement (Youssef), March, 60

Void ratio: Effect of rigid boundaries on measurement of particle concentration (Haidin), June, 143

voids: Pulse shapes from ground penetrating radar (Reames), Sept., 244

W

Wagner, L. A.: see Senseny, P. E., Mellegard, K. D., and Wagner, L. A.

Water balloon apparatus: A large-capacity batch filling water balloon apparatus for deep in-situ density tests (Cooper and Fleming), Sept., 222

Wave propagation: A nonlinear one-dimensional wave analysis of a triaxial soil specimen (Carroll), March, 45

Wetzel, R. A. and Rolle, K. C.: A model study of the influence of stress on the thermal conductivity of dry sand. June, 167

X

X-ray radiography: X-ray radiographic investigation of perchloroethylene migration at the Livingston derailment site (Ferrell, Arman, and Grosch), June, 119

Yang, P. C. Y.: see Hird, C. C. and Yang, P. C. Y.

Yokel, F. Y.: see Ladd, R. S., Dobry, R., Dutko, P., Yokel, F. Y., and Chung, R. M.

Yoshiie, H.: see Tatsuoka, F., Pradhan, T. B. S., and Yoshiie, H.

Youssef, A. -F. A.: The vane cone: a new device for soil shear strength measurement, March, 60