To convert from	to	multiply by
atmosphere (760 mm Hg) | pascal (Pa) | 1.01325 x 10^5
board foot | cubic metre (m³) | 2.59173 x 10^-3
Btu (International Table) | joule (J) | 1.05506 x 10^3
Btu (International Table)/h | watt (W) | 1.16219 x 10^-1
Btu (International Table)/in./s/ft² °F | watt per metre kelvin [W/(m·K)] | 5.19204 x 10^-2
(caloric Table) | (thermal conductivity) | (°C = (°F - 32)/1.8)
calorie (International Table) | joule (J) | 4.18680 x 10^-2
centipose | pascal second (Pa·s) | 1.00000 x 10^-1
centistokes | square metre per second (m²/s) | 1.00000 x 10^-1
circular mil | square metre (m²) | 5.06707 x 10^-10
degree Fahrenheit | degree Celsius | t°C = (t°F - 32)/1.8
foot | metre (m) | 3.04800 x 10^-3
ft² | square metre (m²) | 9.29030 x 10^-3
ft³ | cubic metre (m³) | 2.83168 x 10^-3
ft·lbf | joule (J) | 1.35576 x 10^-3
ft·lbf/min | watt (W) | 2.59173 x 10^-3
ft/s² | metre per second squared (m/s²) | 9.80665 x 10^-3
gallon (U.S. liquid) | cubic metre (m³) | 3.78541 x 10^-3
horsepower (electric) | watt (W) | 7.45699 x 10^-3
inch | metre (m) | 2.54000 x 10^-3
in.² | square metre (m²) | 6.45160 x 10^-3
in.³ | cubic metre (m³) | 1.33322 x 10^-3
inch of mercury (60°F) | pascal (Pa) | 3.21501 x 10²
inch of water (60°F) | pascal (Pa) | 9.80665 x 10²
kip (1000 lbf) | newton (N) | 4.44822 x 10²
kip/in.² (ksi) | pascal (Pa) | 6.89475 x 10³
ounce (U.S. fluid) | cubic metre (m³) | 2.95735 x 10⁻³
ounce-force | newton (N) | 2.78013 x 10⁻³
ounce (avoirdupois) | kilogram (kg) | 2.83495 x 10⁻²
oz (avoirdupois)/ft³ | kilogram per square metre (kg/m²) | 3.05157 x 10⁻¹
oz (avoirdupois)/yd² | kilogram per square metre (kg/m²) | 3.39075 x 10⁻²
oz (avoirdupois)/gal (U.S. liquid) | kilogram per cubic metre (kg/m³) | 7.48915 x 10⁻²
pint (U.S. liquid) | cubic metre (m³) | 4.73176 x 10⁻⁴
pound-force (lbf) | newton (N) | 4.44822
pound (lb avoirdupois) | kilogram (kg) | 4.53592 x 10⁻¹
lb/in² (psi) | pascal (Pa) | 6.89475 x 10²
lb/ft³ | kilogram per cubic metre (kg/m³) | 2.76799 x 10⁴
lb/ft³ | kilogram per cubic metre (kg/m³) | 1.60185 x 10⁵
quart (U.S. liquid) | cubic metre (m³) | 9.46353 x 10⁻⁴
ton (short, 2000 lb) | kilogram (kg) | 9.07185 x 10⁻²
torr (mm Hg, 0°C) | pascal (Pa) | 1.33322 x 10⁻³
W·h | joule (J) | 3.60000 x 10⁻⁹
yard | metre (m) | 9.14400 x 10⁻⁵
yd² | square metre (m²) | 8.36127 x 10⁻¹
yd² | cubic metre (m³) | 7.64554 x 10⁻¹

*Exact
QUESTIONNAIRE ON SUBJECT AREAS OF AUTHORS AND REVIEWERS

Check one: ☐ Author ☐ Reviewer

Name: ____________________________ Title: ____________________________
Mailing Address: ____________________________ Tel: ____________________________
___ Fax: ____________________________
E Mail: ____________________________

To facilitate timely and fair reviews of papers submitted to GTJ, (a) authors of manuscripts submitted for publication are asked to circle the subject areas most applicable to their respective manuscripts, and (b) prospective reviewers are asked to circle the subject areas in which they have the greatest current competence to provide informed technical evaluations of manuscripts submitted to GTJ for publication. Thank you.

The Technical Editors

1. FIELD EXPLORATION

1.1 Reconnaissance
1.2 Mapping and GIS
1.3 Remote Sensing
1.4 Geophysical Methods
1.5 Geochemical Methods
1.6 Geobotanical Methods
1.7 Borehole Logging
1.8 Drilling Operations
1.9 Sampling Soil
1.10 Sampling Rock
1.11 Sample Transport and Storage
1.12 Ground Water Monitoring
1.13 Surface Water Monitoring
1.14 Other __________

2. FIELD (IN SITU) TESTING

2.1 Calcareous Soils
2.2 Marine and Lacustrine Sediments
2.3 Admixtures
2.4 Hydrocarbon-Bearing Soils
2.5 Hazardous Materials
2.6 Pollutants
2.7 Jointed Rock
2.8 Tailings, Backfill, Talus
2.9 Penetration Testing
2.10 Moisture, Density
2.11 In Situ Stresses
2.12 Transmissivity, Storativity
2.13 Physicochemical Testing
2.14 Stress-Strain, Strength
2.15 Load-Deformation
2.16 Seismic Methods, Acoustic Emission
2.17 Other __________

3. TESTING AND MONITORING SOIL AND ROCK STRUCTURES

3.1 Embankments
3.2 Rock for Erosion Control
3.3 Dams
3.4 Tunnels and Shafts
3.5 Marine Structures
3.6 Waste Impoundments
3.7 Pavement Systems
3.8 Drainage Aids
3.9 Natural Slopes
3.10 Fills
3.11 Retaining Structures
3.12 Liners
3.13 Geotextile Structures
3.14 Mechanically Modified Soil and Rock
3.15 Chemically Modified Soil and Rock
3.16 Biologically Modified Soil and Rock
3.17 Admixtures
3.18 Erosion Tests
3.19 Subsidence and Collapse
3.20 Piles and Foundations
3.21 Other __________

4. LABORATORY TESTING—SOIL

4.1 Classification, Identification, Nomenclature
4.2 Sampling and Specimen Preparation, Transportation, and Storage
7. LABORATORY TESTING—ROAD AND PAVING MATERIALS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Sub-Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Classification, Identification, Nomenclature</td>
</tr>
<tr>
<td>7.2</td>
<td>Specimen Preparation</td>
</tr>
<tr>
<td>7.3</td>
<td>Mechanical Properties, Rheology</td>
</tr>
<tr>
<td>7.4</td>
<td>Chemical Properties</td>
</tr>
<tr>
<td>7.5</td>
<td>Durability Properties</td>
</tr>
<tr>
<td>7.6</td>
<td>Specific Gravity and Density</td>
</tr>
<tr>
<td>7.7</td>
<td>Analyses of Mixtures</td>
</tr>
<tr>
<td>7.8</td>
<td>Other</td>
</tr>
</tbody>
</table>

8. LABORATORY-MODEL TESTING

<table>
<thead>
<tr>
<th>Topic</th>
<th>Sub-Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Soil-Rock-Structure Interaction</td>
</tr>
<tr>
<td>8.2</td>
<td>Soil and Rock Reinforcement</td>
</tr>
<tr>
<td>8.3</td>
<td>Grouts and Admixtures</td>
</tr>
<tr>
<td>8.4</td>
<td>Geotextiles</td>
</tr>
<tr>
<td>8.5</td>
<td>Fluid Flow through Soil and Rock</td>
</tr>
<tr>
<td>8.6</td>
<td>Simulated Soil and Rock</td>
</tr>
<tr>
<td>8.7</td>
<td>Centrifuge Tests</td>
</tr>
<tr>
<td>8.8</td>
<td>Other</td>
</tr>
</tbody>
</table>

9. MISCELLANEOUS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Sub-Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Quality Control, Quality Assurance</td>
</tr>
<tr>
<td>9.2</td>
<td>Equipment Calibration and Traceability</td>
</tr>
<tr>
<td>9.3</td>
<td>Proficiency Testing</td>
</tr>
<tr>
<td>9.4</td>
<td>Ruggedness in Testing</td>
</tr>
<tr>
<td>9.5</td>
<td>Interlaboratory Testing; Repetability and Reproducibility</td>
</tr>
<tr>
<td>9.6</td>
<td>Error Propagation</td>
</tr>
<tr>
<td>9.7</td>
<td>Automated Control of Testing</td>
</tr>
<tr>
<td>9.8</td>
<td>Data Acquisition, Reduction and Management</td>
</tr>
<tr>
<td>9.9</td>
<td>Probabilistic Methods</td>
</tr>
<tr>
<td>9.10</td>
<td>Numerical Modelling</td>
</tr>
<tr>
<td>9.11</td>
<td>Laboratory Accreditation</td>
</tr>
<tr>
<td>9.12</td>
<td>Education and Training</td>
</tr>
<tr>
<td>9.13</td>
<td>Terminology, Definitions, and Notation</td>
</tr>
<tr>
<td>9.14</td>
<td>Other</td>
</tr>
<tr>
<td>9.15</td>
<td>Other</td>
</tr>
</tbody>
</table>

SUMMARY OF NUMBERS CHECKED: _______ _______ _______ _______

COMMENTS:

Please send completed form to:
Ms. Kathy G. Dernoga, Manager, Acquisitions and Review
ASTM Publications
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
or FAX 1 610 832-9635