Geotechnical Testing Journal
Index to Volume 9
1986

Capillary pressures: Discussion of “Evaluation of Soil Suction Components” by T. B. Edil and S. E. Motan (Richards, Emerson, and Petry), March, 41
Carpenter, G. W. and Stephenson, R. W.: Permeability testing in the triaxial cell, March, 3
Centrifuges
Determination of ice forces with centrifuge models (Clough, Kurst, and Vinson), June, 49
Effect of boundary conditions upon centrifuge experiments using ground motion simulation (Whitman and Lambe), June, 61
A new boundary stress transducer for small soil models in the centrifuge (Pang), June, 72
Chameau, J. L.: see Alarcon, A., Chameau, J. L., and Leonards, G. A.
Chemical analysis: The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34
Clay
The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34
Discussion of “Evaluation of Soil Suction Components” by T. B. Edil and S. E. Motan (Richards, Emerson, and Peter), March, 41
A new technique to evaluate erosivity of cohesive material (Rohan, Lefebvre, Douville, and Milette), June, 67
A rapid method to identify clay type in soils by the free-swell technique (Sridharan, Rao, and Murthy), Dec., 198
Swelling pressure of clays (Sridharan, Rao, and Sivapullaiah), March, 24
Clough, H. F., Kurst, P. L., and Vinson, T. S.: Determination of ice forces with centrifuge models, June, 49
Compaction
Characteristic threshold and infrared vibrothermography of sand (Pang), June, 80
Swelling pressure of clays (Sridharan, Rao, and Sivapullaiah), March, 24
Compressive strength: Development of an erosion test for soil cement (Oswell and Joshi), March, 19
Conetometer: Effect of cementation on the cone penetration resistance of sand: a model study (Rad and Tumay), Sept., 117
Crack propagation: Development of an index to quantify rock texture for qualitative assessment of intact rock properties (Howarth and Rowlands), Dec., 169
Craft, D.: The application of multivariate statistics and saturation extract data to identify dispersive clay soils, March, 34

D
Damping: Testing using a large-scale cyclic simple shear device (Amer, Aggour, and Kovacs), Sept., 140
Davidson, J. L. and Bloomquist, D. G.: New equipment and techniques for use with the Cambridge self-boring pressuremeter (Davidson and Bloomquist), June, 107
Dilatancy: Characteristic threshold and infrared vibrothermography of sand (Luong), June, 80
Dilatometer tests: Suggested method for performing the flat dilatometer test (ASTM Subcommittee 18.02), June, 93
Direct shear tests: Cyclic simple shear testing of granular materials (Shaw and Brown), Dec., 213
Douville, S.: see Rohan, K., Lefebvre, G., Douville, S., and Milette, J.-P.
Drill holes: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180
Drnevich, V. P.: Editorial, Dec., 167
Editorial, March, 2
50th Anniversary Celebration of Committee D-18, Dec., 226

E
Earth pressure cell: Factors affecting the performance of a pneumatic earth pressure cell (Felio and Bauer), June, 102
Earthquakes: Effect of boundary conditions upon centrifuge experiments using ground motion simulation (Whitman and Lambe), June, 61
Edil, T. B.: see Whited, G. C. and Edil, T. B.
Emerson, W. W.: see Richards, B. G., Emerson, W. W., and Peter, P.
Erosion: A new technique to evaluate erosivity of cohesive material (Rohan, Lefebvre, Douville, and Milette), June, 87
Erosion tests: Development of an erosion test for soil cement (Oswell and Joshi), March, 19
Evans, J. C. and Fang, H.-Y.: Triaxial equipment for permeability testing with hazardous and toxic permeants, Sept., 126

F
Fang, H.-Y.: see Evans, J. C. and Fang, H.-Y.
Felio, G. Y. and Bauer, G. E.: Factors affecting the performance of a pneumatic earth pressure cell, June, 102

C
Campanella, R. G.: see Robertson, P. K. and Comanella, R. G.
Calibrations: Factors affecting the performance of a pneumatic earth pressure cell (Felio and Bauer), June, 102
Copyright © 1986 by ASTM International

www.astm.org
Flattened plate dilatometer: Estimating liquefaction potential of sands using the flattened plate dilatometer (Robertson and Campanella), March, 38

Frozen soils: Discussion of “Repeated Load Triaxial Testing of Frozen and Thawed Soils” by D. M. Cole, G. Durrell, and E. Chamberlain (Youssef), Dec., 221

Hazardous wastes: Triaxial equipment for permeability testing with hazardous and toxic permeants (Evans and Fang), Sept., 126

Holtz, R. D., II: see Juang, C. H. and Holtz, R. D., II

Howarth, D. F. and Rowlands, J. C.: Development of an index to quantify rock texture for qualitative assessment of intact rock properties, Dec., 169

Hydraulic conductivity: Triaxial equipment for permeability testing with hazardous and toxic permeants (Evans and Fang), Sept., 126

Ice: Determination of ice forces with centrifuge models (Clough, Kurst, and Vinson), June, 49

In-situ testing
Estimating liquefaction potential of sands using the flattened plate dilatometer (Robertson and Campanella), March, 38

A new equipment and techniques for use with the Cambridge self-boring pressuremeter (Davidson and Bloomquist), June, 107

Joshi, R. C.: see Oswell, J. M. and Joshi, R. C.

Juang, C. H. and Holtz, R. D., II: Preparation of specimens of noncohesive material for mercury intrusion porosimetry, Sept., 154

K-L
Kovacs, W. D.: see Amer, M. I., Aggour, M. S., and Kovacs, W. D.

Kurst, P. L.: see Clough, H. F., Kurst, P. L., and Vinson, T. S.

Laboratory testing
Testing using a large-scale cyclic simple shear device (Amer, Aggour, and Kovacs), Sept., 140

Triaxial equipment for permeability testing with hazardous and toxic permeants (Evans and Fang), Sept., 140

Lambe, P. C.: see Whitman, R. V. and Lambe, P. C.

Lefebvre, G.: see Rohan, K., Lefebvre, G., Douville, S., and Millette, J.-P.

Leonards, G. A.: see Alarcon, A., Chameau, J. L., and Leonards, G. A.

Liquid limits: Significance of specimen preparation upon soil plasticity (Armstrong and Petry), Sept., 147

Liquefaction: Estimating liquefaction potential of sands using the flattened plate dilatometer (Robertson and Campanella), March, 38

Luong, M. P.: Characteristic threshold and infrared vibrothermography of sand, June, 80

M
Mercury intrusion porosimetry: Preparation of specimens of noncohesive material for mercury intrusion porosimetry (Juang and Holtz), Sept., 154

Millette, J.-P.: see Rohan, K., Lefebvre, G., Douville, S., and Millette, J.-P.

Model tests: Effect of boundary conditions upon centrifuge experiments using ground motion simulation (Whitman and Lambe), June, 61

Montmorillonite: Liquid limit of montmorillonite soils (Sridharan, Rao, and Murthy), Sept., 156

Multivariate statistics: The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34

Murthy, N. S.: see Sridharan, A., Rao, S. M., and Murthy, N. S.

Muster, G. L., II and O'Neill, M. W.: Dynamically loaded pile overconsolidated clay, Dec., 189

N-O
Noncohesive material: Preparation of specimens of noncohesive material for mercury intrusion porosimetry (Juang and Holtz), Sept., 154

O'Neill, M. W.: see Muster, G. L., II and, O'Neill, M. W.


Overconsolidated clays: Dynamically loaded pile in overconsolidated clay (Muster and O'Neill), Dec., 189

P
Pang, P. L. R.: A boundary stress transducer for small soil models in the centrifuge, June, 72

Penetration rig: New equipment and techniques for use with the Cambridge self-boring pressuremeter (Davidson and Bloomquist), June, 107

Penetration tests: Suggested method for performing the flattened plate dilatometer test (ASTM Subcommittee D18.02), June, 93

Permeability: Permeability testing in the triaxial cell (Carpenter and Stephenson), March, 3

Peter, P. A.: see Richards, B. G., Emerson, W. W., and Peter, P. A.

Petry, T. M.: see Armstrong, J. C. and Petry, T. M.

Pile driving: Dynamically loaded pile in overconsolidated clay (Muster and O'Neill), Dec., 189

Pile friction: Procedure for a rod shear test (Fello and Briaud), Sept., 133

Plates
Determination of ice forces with centrifuge models (Clough, Kurst, and Vinson), June, 49

Dynamically loaded pile in overconsolidated clay (Muster and O'Neill), Dec., 189

Plastic limits: Significance of specimen preparation upon soil plasticity (Armstrong and Petry), Sept., 147

Pure size distribution: Preparation of specimens of noncohesive material for mercury intrusion porosimetry (Juang and Holtz), Sept., 154

Pressure cells: A new boundary stress transducer for small soil models in the centrifuge (Pang), June, 72

Pressures: Suggested method for performing the flattened plate dilatometer test (ASTM Subcommittee D18.02), June, 93

R

Relative density: Effect of cementation on the cone penetration resistance of sand: a model study (Rad and Tumay), Sept., 117


Robertson, P. K. and Campanella, R. G.: Estimating liquefaction potential of sands using the flattened plate dilatometer, March, 38

Rock texture: Development of an index to quantify rock texture for qualitative assessment of intact rock properties (Howarth and Rowlands), Dec., 169

Rock tests: Development of an index to quantify rock texture for qualitative assessment of intact rock properties (Howarth and Rowlands), 169

Rod shear test: Procedure for a rod shear test (Fello and Briaud), Sept., 133

Rohan, K., Lefebvre, G., Douville, S., and Millette, J.-P.: A new technique to evaluate erosivity of cohesive material, June, 87

Rowlands, J. C.: see Howarth, D. F. and Rowlands, J. C.

S
Sands
Effect of cementation on the cone penetration resistance of sand: a model study (Rad and Tumay), Sept., 117

Estimating liquefaction potential of sands using the flattened plate dilatometer (Robertson and Campanella), March, 38

Experimental study of rheological properties of a sand using a special triaxial apparatus (Bouvard and Stutz), March, 10

A new apparatus for investigating the stress-strain characteristics of sands (Alarcon, Chameau, and Leonards), Dec., 204

Testing using a large-scale cyclic simple shear device (Amer, Aggour, and Kovacs), Sept., 140

Schmermann, J. H.: Suggested method for performing the flattened plate dilatometer test (ASTM Subcommittee D18.02), June, 93

Shaw, P. and Brown, S. F.: Cyclic simple
A rapid method to identify clay type in soils by the free-swell technique, Dec., 198

Sridharan, A., Rao, A. S., and Sivapullaiah, P. V. Swelling pressure of clays, March, 24

Stephenson, R. W. see Carpenter, G. W. and Stephenson, R. W.

Standard penetration test: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180

Stress: Factors affecting the performance of a pneumatic earth pressure cell (Felio and Bauer), June, 102

Stress-strain curves: Experimental study of rheological properties of a sand using a special triaxial apparatus (Bouvard and Stutz), March, 10

Stutz, P. see Bouvard, D. and Stutz, P.

Swelling: Swelling pressure of clays (Sridharan, Rao, and Sivapullaiah), March, 24

Swelling index: A rapid method to identify clay type in soils by the free-swell technique (Sridharan, Rao, and Murthy), Dec., 198

Standard penetration test: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180

Thawed soils: Discussion of "Repeated Load Triaxial Testing of Frozen and Thawed Soils" by D. M. Cole, G. Durrell, and E. Chamberlain (Youssef), Dec., 221

Experimental study of rheological properties of a sand using a special triaxial apparatus (Bouvard and Stutz), March, 10

Permeability testing in the triaxial cell (Carpenter and Stephenson), March, 3

Tumay, M. T.: see Rad, N. S. and Tumay, M. T.

Vinson, T. S. see Clough, H. F., Kurst, P. L., and Vinson, T. S.

T

Test procedures: A new technique to evaluate erosivity of cohesive material (Rohan, Lefebvre, Douville, and Millette), June, 87

Thawed soils: Discussion of "Repeated Load Triaxial Testing of Frozen and Thawed Soils" by D. M. Cole, G. Durrell, and E. Chamberlain (Youssef), Dec., 221

Torsion shear tests: A rapid apparatus for investigating the stress-strain characteristics of sands (Alarcon, Chameau, and Leonards), Dec., 204

Torsional shear apparatus: A new apparatus for investigating the stress-strain characteristics of sands (Alarcon, Chameau, and Leonards), Dec., 204

Whited, G. C. and Edil, T. B.: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180

Whitman, R. V. and Lambe, P. C.: Effect of boundary conditions upon centrifuge experiments using ground motion simulation, June, 61