Geotechnical Testing Journal
Index to Volume 8
1985

<table>
<thead>
<tr>
<th>Number</th>
<th>Month of Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March</td>
<td>1-48</td>
</tr>
<tr>
<td>2</td>
<td>June</td>
<td>49-100</td>
</tr>
<tr>
<td>3</td>
<td>September</td>
<td>101-150</td>
</tr>
<tr>
<td>4</td>
<td>December</td>
<td>151-214</td>
</tr>
</tbody>
</table>

A

Adhesion: Evaluation of adhesion in chemically grouted geomaterials (Krizek and Vipulanandan), Dec., 184
Almeida, M. S. and Parry, R. H. G.: Small cone penetrometer tests and piezocone tests in laboratory consolidation clays, March, 14

B

Bearing capacities: An underwater instrument for determining bearing capacity of shallow marine sediments (Cire6), June, 96
Budhu, M.: The effect of clay content on liquid limit from a fall cone and the British cup device, June, 91

C

Carbonates: An underwater instrument for determining bearing capacity of shallow marine sediments (Cire6), June, 96
Carroll, R. G., Jr.: see Suits, L. D., Carroll, R. G., Jr., and Christopher, B. R.
Chemical grouts: Evaluation of adhesion in chemically grouted geomaterials (Krizek and Vipulanandan), Dec., 184
Christopher, B. R.: see Suits, L. D., Carroll, R. G., Jr., and Christopher, B. R.
Chung, R. M. and Yokel, F. Y.: Prediction of pore-water pressure buildup during undrained resonant column testing of virgin sand specimens, March, 41
Cire6, R. C.: An underwater instrument for determining bearing capacity of shallow marine sediments, June, 96

The effect of clay content on liquid limit from a fall cone and the British cup device (Budhu), June, 91
Improved rectangular hyperbola method for the determination of coefficient of consolidation (Sridharan and Prakash), March, 37
Liquid limit of soil mixtures (Sivapullaiah and Sridharan), Sept., 111
Small cone penetrometer tests and piezocone tests in laboratory consolidated clays (Almeida and Parry), March, 14
Clough, G. W.: see Rad, N. S. and Clough, G. W.
Cole, D. M.: Repeated load triaxial testing of frozen and thawed soils, Dec., 166
Computers: Electro-servo control system for thermo-mechanical properties testing (Myer), Dec., 171
Concrete: A direct tensile loading apparatus combined with a cubical test cell for testing rocks and concrete (Meier, Ko, and Sture), June, 71
Cone penetrometer: Small cone penetrometer tests and piezocone tests in laboratory consolidated clays (Almeida and Parry), March, 14
Consolidation coefficients: Improved rectangular hyperbola method for the determination of coefficient of consolidation (Sridharan and Prakash), March, 37
Costa Filho, L. de M.: Measurement of axial strains in triaxial tests on London clay, March, 3
Cyrl, T.: A low-cost ring dynamometer for monitoring the performance of roof bolts, March, 30
Density tests: Sand density measurements for laboratory studies (Trautmann, Kulhawy, and O'Rourke), Dec., 159
Dial gages: A low-cost ring dynamometer for monitoring the performance of roof bolts (Cyrl), March, 30
Direct shear tests: A direct shear machine for testing rock joints (Franklin), March, 25
Drained shear tests: Determinations and uses of strain distributions in sand samples (Wong and Arthur), Sept., 101
Dynamics: Resonant-column apparatus for coarse-grained materials (Heiniger and Studer), Sept., 132
Dynamometers: A low-cost ring dynamometer for monitoring the performance of roof bolts (Cyrl), March, 30

E

Earthquakes: Resonant-column apparatus for coarse-grained materials (Heiniger and Studer), Sept., 132
Elastic modulus: Resonant-column apparatus for coarse-grained materials (Heiniger and Studer), Sept., 132
El-Jandali, A.: see Wu, T. H. and El-Jandali
Errors: Sand density measurements for laboratory studies (Trautmann, Kulhawy, and O'Rourke), Dec., 159

F

Field tests: Use of time series in geotechnical data analysis (Wu and El-Jandali), Dec., 151
Filters: Geotextile filters for a large liquefaction tank (Hryciw, Cornet, and Dowding), Sept., 140
Pressure response of the piezocone penetrometer (Rad and Tumay), Sept., 125
Franklin, J. A.: A direct shear machine for testing rock joints, March, 25
Freezing: Soil freezing response: influence of test conditions (McCabe and Kettle), June, 49
Frost heave: Soil freezing response: influence of test conditions (McCabe and Kettle), June, 49
Frozen soils: Repeated load triaxial testing of frozen and thawed soils (Cole, Durrell, and Chamberlain), Dec., 166
G-H

Geotextiles: ASTM geotextile committee testing update (Suits, Carroll, and Christopher), Dec., 191

Heiniger, C. and Studer, J. A.: Resonant-column apparatus for coarse-grained materials, Sept., 132

Heterogeneity: Determinations and uses of strain distributions in sand samples (Wong and Arthur), Sept., 101

Howarth, D. F.: Development and evaluation of ultrasonic piezoelectric transducers for the determination of dynamic Young's modulus of triaxially loaded rock cores, June, 59

Hryciw, R. D., Cornet, J.-M., and Dowding, C. H.: Geotextile filters for a large liquefaction tank, Sept., 140

Hydraulic conductivity: Pore-pressure response of the piezocene penetrometer (Rad and Tumay), Sept., 125

J-K

Instrumentation: Sand density measurements for laboratory studies (Trautmann, Kulhawy, and O' Rourke), Dec., 159

Ishibashi, I.: Effect of grain characteristics on liquefaction potential—in search of standard sand for cyclic strength, Sept., 137

ISSMFE Subcommittee on Field and Laboratory Testing: Axial pile loading test—Part 1: static loading, June, 79

Kulhawy, F. H.: see Lam, T. S. K. and Johnston, I. W.

Johnston, I. W.: see Lam, T. S. K. and Johnston, I. W.

Joint: A scanning device to quantify joint surface roughness (Lam and Johnston), Sept., 117

Kettle, R. J.: see McCabe, E. Y. and Kettle, R. J.

Ko, H.-Y.: see Meier, R. W., Ko, H.-Y., and Sture, S.

Krizek, R. J. and Vipulanandan, C.: Evaluation of adhesion in chemically grouted geomaterials, Dec., 184

Kulhawy, F. H.: see Trautmann, C. H., Kulhawy, F. H., and O'Rourke, T. D.

L

Laboratory tests

A direct shear machine for testing rock joints (Franklin), March, 25

Alternative test method for ensuring full saturation in triaxial samples (Strachan), March, 43

Measurement of volumetric and linear shrinkage on black cotton soil (Subba Rao and Satyadas), June, 66

A new automatic volume change monitoring device (Rad and Clough), Dec., 179

Pore-pressure response of the piezocene penetrometer (Rad and Tumay), Sept., 125

Use of Time Series in geotechnical data analysis (Wu and El-Jandule), Dec., 151

Lam, T. S. K. and Johnston, I. W.: A scanning device to quantify joint surface roughness, Sept., 117

Liquefaction

Effect of grain characteristics on liquefaction potential—in search of standard sand for cyclic strength (Ishibashi), Sept., 137

Geotextile filters for a large liquefaction tank (Hryciw, Cornet, and Dowding), Sept., 140

Liquid limit

The effect of clay content on liquid limit from a fall cone and the British cup device (Budhu), June, 91

Liquid limit of soil mixtures (Sivapulliah and Sridharan), Sept., 111

Loading distribution: Axial pile loading test—Part 1: static loading (ISSMFE), June, 79

Load tests: Axial pile loading test—Part 1: static loading (ISSMFE), June, 79

M

Marine geology: An underwater instrument for determining bearing capacity of shallow marine sediments (Circ), June, 96

McCabe, E. Y. and Kettle, R. J.: Soil freezing response: influence of test conditions, June, 49

Meier, R. W., Ko, H.-Y., and Sture, S.: A direct tensile loading apparatus combined with a cubical test cell for testing rocks and concrete, June, 71

Murthy, B. R. S.: see Nagaraj, T. S. and Murthy, B. R. S.

Myer, L. R.: Electro-servo control system for thermomechanical properties testing, Dec., 171

N-O

Nagaraj, T. S. and Murthy, B. R. S.: Prediction of the preconsolidation pressure and recompression index soils, Dec., 199

O'Rourke, T. D.: see Trautmann, C. H., Kulhawy, F. H., and O'Rourke, T. D.

P


Pary, R. H. G.: see Almeida, M. S. S. and Pary, R. H. G.

Piezoelectric effects: Development and evaluation of ultrasonic piezoelectric transducers for the determination of dynamic Young's modulus of triaxially loaded rock cores (Howarth), June, 59

Plasticity index: Liquid limit of soil mixtures (Sivapulliah and Sridharan), Sept., 111

Pure pressures

A new automatic volume change monitoring device (Rad and Clough), Dec., 179

Small cone penetrometer tests and piezocene tests in laboratory consolidated clays (Almeida and Pary), March, 14

Pore-water pressures

Effect of grain characteristics on liquefaction potential—in search of standard sand for cyclic strength (Ishibashi), Sept., 137

Prediction of pore-water pressure buildup during undrained resonant column testing of virgin sand specimens (Chung and Yokel), March, 41

Prakash, K.: see Sridharan, A. and Prakash, K.

Precompression pressure: Prediction of the preconsolidation pressure and recompression index of soils (Nagaraj and Murthy), Dec., 199

Rocks

Development and evaluation of ultrasonic piezoelectric transducers for the determination of dynamic Young's modulus of triaxially loaded rock cores (Howarth), June, 59

A direct shear machine for testing rock joints (Franklin), March, 25

A direct tensile loading apparatus combined with a cubical test cell for testing rocks and concrete (Meier, Ko, and Sture), June, 71

Electro-servo control system for thermomechanical properties testing (Myer), Dec., 171

Evaluation of adhesion in chemically grouted geomaterials (Krizek and Vipulanandan), Dec., 184

A scanning device to quantify joint surface roughness (Lam and Johnston), Sept., 117

S

Sands

Effect of grain characteristics on liquefaction potential—in search of standard sand for cyclic strength (Ishibashi), 137

Geotextile filters for a large liquefaction tank (Hryciw, Cornet, and Dowding), Sept., 140

Prediction of pore-water pressures buildup during undrained resonant column testing of virgin sand specimens (Chung and Yokel), March, 41

Satyadas, G. C.: see Subba Rao, K. S. and Satyadas, G. C.

Schiffman, R. L.: Closure to Discussion by Parkin, A. K., Sept., 143

Shear strain: Prediction of pore-water pressure buildup during undrained resonant column testing of virgin sand specimens (Chung and Yokel), March, 41

Shear strength

The Effect of clay content on liquid limit from a fall cone and the British cup device (Budhu), June, 91

A scanning device to quantify joint surface roughness (Lam and Johnston), Sept., 117
INDEX 211

Shrinkage: Measurement of volumetric and linear shrinkage on black cotton soil (Subba Rao and Satyadas), June, 66

Sivapullaiah, P. V. and Sridharan, A.: Liquid limit of soil mixtures, Sept., 111


Soil tests
Alternative test method for ensuring full saturation in triaxial samples (Strachan), March, 43
Improved rectangular hyperbola method for the determination of coefficient of consolidation (Sridharan and Prakash), March, 37
Measurement of axial strains in triaxial tests on London clay (Costa Filho), March, 3
Measurement of volumetric and linear shrinkage on black cotton soil (Subba Rao and Satyadas), June, 66
A new automatic volume change monitoring device (Rad and Clough), Dec., 179
Prediction of the preconsolidation pressure and recompresion index of soils (Nagaraj and Murthy), Dec., 199

Soils
Soil freezing response: Influence of test conditions (McCabe and Kettle), June, 49
Sridharan, A.: see Sivapullaiah, P. V. and Sridharan, A.

Sridharan, A. and Prakash, K.: Improved rectangular hyperbola method for the determination of coefficient of consolidation, March, 37

Standards: ASTM geotextile committee testing update (Suits, Carroll, and Christopher), Dec., 191
Static pile bearing capacity: Axial pile loading test—Part 1: static loading (ISSMFE), June, 79

Strachan, P.: Alternative test method for ensuring full saturation in triaxial samples, March, 43
Studer, J. A.: see Heiniger, C. and Studer, J. A.
Sture, S.: see Meier, R. W., Ko, H.-Y., and Sture, S.
Subba Rao, K. S. and Satyadas, G. C.: Measurement of volumetric and linear shrinkage on black cotton soil, June, 66
Suits, L. D., Carroll, R. G., Jr., and Christopher, B. R.: ASTM geotextile committee testing update, Dec., 191

T

Tensile strength: ASTM geotextile committee testing update (Suits, Carroll, and Christopher), Dec., 191
Tensile stress: A direct tensile loading apparatus combined with a cubical test cell for testing rocks and concrete (Meier, Ko, and Sture), June, 71
Testing machines: Electro-servo control system for thermomechanical properties testing (Meyer), Dec., 171
Thawed soils: Repeated load triaxial testing of frozen and thawed soils (Cole, Durell, and Chamberlain), Dec., 166
Triaxial tests
Alternative test method for ensuring full saturation in triaxial samples (Strachan), March, 43
Development and evaluation of ultrasonic piezoelectric transducers for the determination of dynamic Young’s modulus of triaxially loaded rock cores (Howarth), June, 59
Measurement of axial strains in triaxial tests on London clay (Costa Filho), March, 3
Repeated load triaxial testing of frozen and thawed soils (Cole, Durell, and Chamberlain), Dec., 166
Tumay, M. T.: see Rad, N. S. and Tumay, M. T.

T

Unconfined compression tests: Use of time series in geotechnical data analysis (Wu and El-Jandali), Dec., 151
Vipulanandan, C.: see Krizek, R. J. and Vipulanandan, C.
Yokel, F. Y.: see Chung, R. M. and Yokel, F. Y.