Geotechnical Testing Journal
Index to Volume 2
1979

<table>
<thead>
<tr>
<th>Number</th>
<th>Month of Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March</td>
<td>1-68</td>
</tr>
<tr>
<td>2</td>
<td>June</td>
<td>69-128</td>
</tr>
<tr>
<td>3</td>
<td>September</td>
<td>129-184</td>
</tr>
<tr>
<td>4</td>
<td>December</td>
<td>185-240</td>
</tr>
</tbody>
</table>

A - C

Anisotropy: Discussion of “some effects of test configuration on measured soil properties under cyclic loading” by Robert Pyke (Townsend and Gilbert), Sept., 170

Antonini, M.: see Tumay, M. T., Antonini, M., and Arman, A.

Arman, A.

see SeGall, R. A. and Arman, A.

see Tumay, M. T., Antonini, M., and Arman, A.

Attenuation: Determination of attenuation and penetration depth of microwaves in soil (Lord, Koerner, and Reif), June, 77

Bocking, K. A. and Fredlund, D. G.: Use of the osmotic tensiometer to measure negative pore water pressure, March, 3

Boyce, J. R.: Discussion of “minimum and maximum densities of granular materials” by G. R. Mehdiratta and G. E. Triandafilidis, March, 61

Briand, J. L. and Shields, D. H.: Special pressure meter and pressure meter test for pavement evaluation and design, Sept., 143

Chaney, R. C., Stevens, E., and Sheth, N.: Suggested test method for determination of degree of saturation of soil samples by B value measurement, Sept., 158

Chemical grouts: Strength and stiffness of silicate grouted sand with different stress histories (Diefenthal, Borden, Baker, and Krizek), Dec., 200

Clam shells: Problems associated with permeability tests of shells (SeGall and Arman), June, 114

Clays

Discussion of “normalized deformation parameters for kaolin” by H. G. Poulos (Mayne), June, 118

Fluid cushion truly triaxial or multiaxial testing device (Sture and Desai), March, 20

Cohesion: Multistage triaxial testing of rocks (Kim and Ko), June, 98

Cohesionless soils: Suggested method for the calibration of vibrating tables for maximum index density testing (Kaufman, Strickland, and Benavidez), Sept., 152

Compaction

Comparisons of field density test results (Kaderabek and Ferris), Dec., 206

Strength testing of compacted shale (Abeyesekera, Lovell, and Wood), March, 11

Computers: Automated data acquisition, transducers, and dynamic recording for the geotechnical testing laboratory (Silver), Dec., 185

Consolidation: Estimation of consolidation properties of clay from field observations (Pelletier, Olson, and Rixner), March, 34

Constant-head permeameter: Determination of permeability anisotropy in a two-way permeameter (Moore), Sept., 167

Creep: Hydraulic tensile test with zero transverse strain for geotechnical fabrics (Rau-mann), June, 69

D - G

Dakshanamurthy, V.: Stress-controlled study of swelling characteristics of compacted expansive clays, March, 57

Deformation: Discussion of “normalized deformation parameters for kaolin” by H. G. Poulos (Mayne), June, 118

Density

Discussion of “minimum and maximum densities of granular materials” by G. R. Mehdiratta and G. E. Triandafilidis (Boyce), March, 61

Laboratory method of measuring in-situ density distribution in dry sand (Singh, Ergatoudis, and Siah), Sept., 129

Sampling and in-situ density of a saturated gravel deposit (Vallee and Skrynness), Sept., 136

Desai, C. S.: see Sture, S. and Desai, C. S.

Direct shear tests: New direct simple shear device (Franke, Kiebusch, and Schup-pener), Dec., 190

Drill holes: North American experience in sampling and laboratory dynamic testing (Horn), June, 84

Dynamics: North American experience in sampling and laboratory dynamic testing (Horn), June, 84

Earthquakes: Compilation of cyclic triaxial liquefaction test data (Ferrito, Forrest, and Wu), Jan., 106

Ergatoudis, J.: see Singh, G., Ergatoudis, J., and Siah, B. S.

Ferris, W. R.: see Kaderabek, T. J. and Ferris, W. R.

Field tests

Comparisons of field density test results (Kaderabek and Ferris), Dec., 206

Special pressure meter and pressure meter test for pavement evaluation and design (Briand and Shields), Sept., 143

Filter stones: Problems associated with permeability tests of shells (SeGall and Arman), June, 114

Forrest, J. B.: see Ferrito, J. M., Forrest, J. B., and Wu, G.

Franke, E., Kiebusch, M., and Schuppenne, B.: New direct simple shear device, Dec., 190

Fredlund, D. G.: see Bocking, K. A. and Fredlund, D. G.

Frost action: Small-scale testing of soils for frost action (Sayward), Dec., 223

Frost heaves: Small-scale testing of soils for frost action (Sayward), Dec., 223

Geotechnical fabrics: Metal versus nonwoven fiber fabric earth reinforcement in dry sands: a comparative statistical analysis of model tests (Tumay, Antonini, and Arman), March, 44

Gilbert, P. A.: see Townsend, F. C. and Gilbert P. A.

Granular materials: Discussion of “minimum and maximum densities of granular ma-
Laboratory method of measuring in-situ density distribution in dry sand (Singh, Ergatoudis, and Siah), Sept., 129
Metal versus nonwoven fiber earth reinforcement in dry sands: a comparative statistical analysis of model tests (Tumay, Antonini, and Arman), March, 44

Saturation: Suggested test method for determination of degree of saturation of soil samples by \(B \) value measurement (Chaney, Stevens, and Sheth), Sept., 158

Sayward, J. M.: Small-scale testing of soils for frost action, Dec., 223

Schuppener, B.: see Franke, E., Kiekbusch, M., and Schuppener, B.

Sedimentation: Laboratory method for preparation of a layered soil system (Krishna Murthy, Nagaraj, and Sridharan), Sept., 163

Seepage: Determination of permeability anisotropy in a two-way permeameter (Moore), Sept., 167

SeCall, R. A. and Arman, A.: Problems associated with permeability tests of shells, June, 114

Settlement: Estimation of consolidation properties of clay from field observations (Pelletier, Olson, and Rixner), March, 34

Shales: Strength testing of compacted shale (Abeyesekera, Lovell, and Wood), March, 11

Shear apparatus: On the determination of stress state in the simple shear apparatus (Wood, Drescher, and Budhu), Dec., 211

Shear strength: Discussion of "normalized deformation parameters for kaolin" by H. G. Poulos (Mayne), June, 118

Shear stress: On the determination of stress state in the simple shear apparatus (Wood, Drescher, and Budhu), Dec., 211

Shear tests: Discussion of "some effects of test configuration on measured soil properties under cyclic loading" by Robert Pyke (镇send and Gilbert), Sept., 170

Sheth, N.: see Chaney, R. C., Stevens, E., and Sheth, N.

Shields, D. H.: see Briaud, J-L. and Shields, D. H.

Siah, B. S.: see Singh, G., Ergatoudis, J., and Siah, B. S.

Silver, M. L.: Automated data acquisition, transducers, and dynamic recording for the geotechnical testing laboratory, Dec., 185

Skyrnes, R. S.: see Vallee, R. P. and Skyrnes, R. S.

Slaking: Strength testing of compacted shale (Abeyesekera, Lovell, and Wood), March, 11

Soil samples

Laboratory method for preparation of a layered soil system (Krishna Murthy, Nagaraj, and Sridharan), Sept., 163

North American experience in sampling and laboratory dynamic testing (Horn), June, 84

Sampling and in-situ density of a saturated gravel deposit (Vallee and Skrynnes), Sept., 136

Soil stabilization: Strength and stiffness of silicate grouted sand with different stress histories (Diefenthal, Borden, Baker, and Krizek), Dec., 200
Soil treatment: Small-scale testing of soils for frost action (Sayward), Dec. 223
Sridharan, A.: see Krishna Murthy, M., Nagaraj, T. S., and Sridharan, A.
Stevens, E.: see Chaney, R. C., Stevens, E., and Sheth, N.
Stiffness: Strength and stiffness of silicate grouted sand with different stress histories (Diefenthal, Borden, Baker, and Krizek), Dec., 200
Stress-strain curves: Hydraulic tensile test with zero transverse strain for geotechnical fabrics (Raumann), June, 69
Sture, S. and Desai, C. S.: Fluid cushion truly triaxial or multiaxial testing device, March, 20
Swelling pressures: A stress-controlled study of swelling characteristics of compacted expansive clays (Dakshanamurthy), March, 57

T - Z

Tensile strength: Hydraulic tensile test with zero transverse strain for geotechnical fabrics (Raumann), June, 69

Thermal conductivity: Laboratory method of measuring in-situ density distribution in dry sand (Singh, Ergatoudis, and Siah), Sept., 129

Triaxial tests
Compilation of cyclic triaxial liquefaction test data (Ferrito, Forrest, and Wu), June, 106
Discussion of “some effects of test configuration on measured soil properties under cyclic loading” by Robert Pyke, Sept., 170

Undrained shear tests
New direct simple shear device (Franke, Kiekbusch, and Schuppener), Dec., 190
Vallee, R. P. and Skryness, R. S.: Sampling and in-situ density of a saturated gravel deposit, Sept., 136

Vibratory compaction: Discussion of “minimum and maximum densities of granular materials” by G. R. Mehdiratta and G. E. Triandafilidis (Boyce), March, 61
Wu, G.: see Ferrito, J. M., Forrest, J. B., and Wu, G.