Geotechnical Testing Journal Table of Contents
Volume 17, 1994

No. 1, March

- **In-Plane Flow of Four Geosynthetics for Landfill Drainage**—ROBERT P. CAMPBELL AND JONATHAN T. H. WU
 KENNETH H. STOKOE II
 3

- **Torsional Motion Monitoring System for Small-Strain (10^{-5} to 10^{-3}%) Soil Testing**—DONG-SOO KIM AND
 KENNY H. STOKOE II
 17

- **Shear Strength of Very Soft Clay-Sand Mixtures**—THIAM-SOON TAN, TEIK-CHEONG GOH, G. P. KARUNARATNE, AND
 SENG-LIP LEE
 27

- **A Critical Evaluation of the Gradient Ratio Test**—R. JONATHAN FANNIN, YOGINDER P. VAID, AND YUCHENG SHI
 33

- **The Effects of Particle Shape and Surface Roughness on the Hydraulic Mean Radius of a Porous Medium Consisting
 of Quarried Rock**—GARY C. W. SABIN AND DAVID HANSEN
 43

- **An Approximate Method for Estimating the Consolidation Behavior of Soft Sensitive Clays**—R. C. JOSHI, GOPAL
 ACHARI, AND FRED J. GRIFFITHS
 50

- **Water Content Relationships of a Sensitive Clay Subjected to Cycles of Capillary Pressures**—VINCENT SILVESTRI
 57

- **Strain Measurement in HDPE Geomembrane Tensile Tests**—J. E. GIROUD, MATT MONROE, AND RICHARD CHARRON
 65

- **A Method for Interpretation of Plate Load Test Results**—YAKOV M. REZNIK
 72

- **Measurements of Elastic Properties of Geomaterials in Laboratory Compression Tests**—FUMIO TATSUOKA,
 TAKEKI SATO, CHOON-SIK PARK, YOU-SEONG KIM, JOHN N. MUKABI, AND YUKIHIRO KOHATA
 80

- **Technical Note: An Image Analysis Method for Studying Movements in Granular and Solid Bodies**—
 LENNART GUSTAFSSON AND SVEN KNUDTSSON
 95

- **Technical Note: Compressibility of Contaminated Fine-Grained Soils**—NAMUNU J. MEEGODA AND
 FRASANNA RATNAWEERA
 101

- **Technical Note: Improved Velocity Method for the Determination of Coefficient of Consolidation**—N. S. PANDIAN,
 A. SRIDHARAN, AND K. SATISH KUMAR
 113

- **Discussion on “B-Value Measurements for Granular Materials at High Confining Pressures,” by Jerry A. Yamamuro
 and Poul V. Lade**—WAYNE A. CHARLIE, GEORGE E. VELYERA, AND DONALD O. DOEHRING
 119

- **Closure**—JERRY A. YAMAMURO AND POUL V. LADE
 121

- **Discussion on “The Simple Pile Load Test (SPLT)” by Myung Whan Lee, Se Whan Paik, Won Jae Lee,
 Chang Tok Yi, Dae Young Kim, and Sung Jhun Yoon**—JOHN N. SCHMERTMANN
 122

Testing Forum

- **Centrifuge Modeling of Laterally Loaded Pile Groups in Sands**—MICHAEL MCVAY, DAVID BLOOMQUIST,
 DENNIS VANDERLINDE, AND JENS CLAUSEN
 129

- **Monitoring System for Hydrologic Evaluation of Landfill Covers**—CRAIG H. BENSON, PETER J. BOSSCHER, DALE T. LANE,
 AND ROBERT J. PLISKA
 138

- **Determination of P-Y Curves Using Inclinometer Data**—DAN A. BROWN, SCOTT A. HIDDEN, AND SHU ZHANG
 150

- **Cyclic Undrained Behavior and Liquefaction Potential of Sand Treated with Chemical Grouts and Microfine Cement
 (MC-500)**—MOHAMAD H. MAHER, KWANG S. RO, AND JOSEPH P. WELSH
 159

- **Laboratory Investigation on Bitumen Coating and Polyethylene Sheet for Downdrag Reduction in Piles: A
 Comparative Study**—KAMAL S. TAWFIQ
 171

- **Laboratory Filter Paper Suction Measurements**—SANDRA L. HOUSTON, WILLIAM N. HOUSTON, AND ANNE-MARIE WAGNER
 185

- **Deformability of Rock-Like Materials Using a Sharp Cone Test**—MARIA HELENA LEITE, BRANKO LADANYI, AND
 DENIS E. GILL
 195

Copyright © 1994 by ASTM International
www.astm.org
Impact-Echo Response of Hollow Cylindrical Concrete Structures Surrounded by Soil and Rock: Part I—Numerical Studies—JIUNN-MING LIN AND MARY SANSALONE

Impact-Echo Response of Hollow Cylindrical Concrete Structures Surrounded by Soil and Rock: Part II—Experimental Studies—JIUNN-MING LIN AND MARY SANSALONE

A Multiple Purpose Soil Testing Apparatus—AN-BIN HUANG, SHI-PIN HSU, AND HAU-RAN KUHN

A New Combined Servo-Controlled Loading Frame/Direct Shear Apparatus for the Study of Concrete or Rock Joint Behavior Under Different Boundary and Loading Conditions—KHALED S. MOUCHAORAB AND BRAHIM BENMOKRANE

Suggested Modifications to ASTM Standard Methods When Testing Arid, Saline Soils—OMAR SAEED BAGHABRA AL-AMOUDI AND SAHEL N. ABDULJAUWAD

Discussion on “Behavior of Fiber-Reinforced Cemented Sand Under Static and Cyclic Loads”—M. H. MAHER, Y. C. HO, AND HOE I. LING

Closure—M. H. MAHER AND Y. C. HO

Testing Forum

Book Review
Technical Note: Effect of Short Duration of Load Increment on the Compressibility of Soils—Asuri Sridharan, Puvvadi V. Sivapullaiah, and V. K. Stalin	489
Technical Note: Instrumentation for a Weigh In Motion System Using Pavement Strain—J. Gilbert Marsh and Richard J. Jewell	498
Technical Note: Test Procedures to Evaluate Absorption and Swelling of Grout—Raymond J. Krizek and Roy H. Borden	512
Technical Note: Moisture Increase in Expansive Soils at Developed Sites—T. S. Sikh	517
Index to Volume 17	519
ASTM Task Group on Data Automation
Questionnaire for Geotechnical Laboratories

1. Name ___________________________ Position ____________________________
 Company __________________________ Type of Organization: University ____
 Address ___________________________ Government _______ Consulting ______
 List testing or standards organizations in which you participate __________________________

2. With regard to the general laboratory: Number of staff devoted to lab ______ Floor area in sq. ft. ______
 Which do you have on staff? ___ Machinist ___ Mechanical engineer ___ Electronic specialist ___ Instrumentation Specialist ___ Software engineer ___
 Which of the following do you have? ___ Temperature Control ___ Dust Control ___ Emergency Power ___

3a. Please complete the following table for soil tests performed in your facility:

<table>
<thead>
<tr>
<th>Soil Tests</th>
<th>Gradation (D2415)</th>
<th>Limits (D4518)</th>
<th>Consolidation (D2445)</th>
<th>UC (D2166)</th>
<th>UU (Q) (D2850)</th>
<th>CU (R) (D4785)</th>
<th>CD (S) (D4785)</th>
<th>Direct Shear (D3086, D3521)</th>
<th>Permeability (D2434, D3084)</th>
<th>Other (D2664, D3296, D2938, D3467)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tests per year</td>
<td>Check if you automatically record data</td>
<td>Check if you use computer for data reduction</td>
<td>Check if you use computer for graphs or tables</td>
<td>Estimated cost savings per test from automation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* describe other test

4. Please complete the following table for rock tests performed in your facility:

<table>
<thead>
<tr>
<th>Rock Tests</th>
<th>Strength (D2664, D3296, D2938, D3467)</th>
<th>Elastic Modulus (D2845, D3348, D3467)</th>
<th>Permeability (D4525)</th>
<th>Creep (D4345, D4405, D4466)</th>
<th>Sonic (D2845)</th>
<th>Thermal (D4535, D4611, D4612, D5334, D3335)</th>
<th>Other (D4664, D3240, D5312, D5313)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tests per year</td>
<td>Check if you automatically record data</td>
<td>Check if you use computer for data reduction</td>
<td>Check if you use computer for graphs or tables</td>
<td>Estimated cost savings per test from automation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* describe other test
ASTM Task Group on Data Automation
Questionnaire for Geotechnical Laboratories

5. If you have a data acquisition system, please answer the following questions (use a separate copy for each system)
 - Type __________________
 - Number of Input Channels ____________
 - Number of tests you monitor at once _______
 - Maximum Number of Readings per second you use_____
 - Total Cost of hardware, excluding sensors________
 - Total cost of sensors ________
 - How are data stored? __printed __tape __floppy disk __hard disk __other _______
 - Describe what you use the system for __
 - Does the system control the test __ Describe how __
 - How much time required to train a new user ______
 - Frequency of breakdown ______
 - Describe reliability ___
 - Did supplier offer service contract __ Did you take it __ Cost of service contract as percent of original system purchase price ______
 - Describe experience with service __
 - Is system rugged __ Give examples ____________________________
 - Has system been cost effective? __ Give example __
 - Are you considering additional equipment __ If yes please answer #7.
 - How do you charge your clients for use of the system __
 - Would you buy the same system again __ Why ___

6. If your data acquisition system uses software to collect and reduce data, please answer the following:
 - Function of software: __collect data __sort data for test from master data file __reduce data __plot results __show real-time graphs of test
 - control test __place data in master data base __perform statistical and/or engineering evaluations of data
 - Programming language used ______
 - Operating system used ____________
 - How much time to train new user ______
 - Who corrects deficiencies __________
 - Can you modify software ________
 - Is software flexible enough for your needs __________
 - Describe software problems you have had __
 - Would you buy same system again __ Why __
 - Is your software available to others __

7. If you have no data acquisition equipment or are considering expansion of your present system
 - Do you plan further automation in the near future? __ Why __
 - Which tests do you plan to automate? __ collect data __reduce data after test __plot results for report __provide real-time graph as test runs __control test __other _______
 - Will you __purchase software __develop software in-house __
 - What information is most helpful in selecting a new system (please rank by importance with 1 as highest) __manufacturer's literature __specs __example results __reliability of system
 - __experience of another with system __ other (specify __)

8. Does your company use data acquisition equipment in field applications? __ Describe __

9. What standards would be helpful to you in regard to using your data acquisition equipment? __

10. Please comment on your experiences with data acquisition systems, positive and negative.

Thank you for your time and help. Please mail the completed questionnaire to: D18.95 Data Automation Survey, c/o Bob Morgan, ASTM, 1916 Race Street, Philadelphia, PA 19103-1187. Phone any questions to Dr. Marr at (508) 635-0012.
Additional Information for Authors

The Geotechnical Testing Journal (GTJ) is a quarterly publication sponsored by ASTM technical committee D-18 on Soil and Rock, with support from D-35 on Geosynthetics, D-4 on Road and Paving Materials, and D-34 on Waste Management. Each published paper and technical note has been peer-reviewed. Papers and technical notes are open to brief written comments in the Discussion section of the Journal, which also includes authors' written responses.

The Technical Editor may consider a paper submitted to the Journal as a Technical Note if: it gives a reasonably brief description of ongoing studies with or without providing interim, tentative data, and/or conclusions; it reports phenomena observed in the course of research requiring further study; it provides mathematical procedures for facilitating reduction and analysis of data; or it reports promising new materials prior to undertaking extensive research to determine their properties.

The decision as to whether a manuscript is published as a paper or a technical note resides with the Technical Editor.

The guidelines below describe our manuscript selection, peer review, revision, and publication processes. Following these guidelines will ensure expeditious handling of submitted material.

Submission

The name, mailing address, position, affiliation, and telephone and fax number of each author must be supplied in a cover letter. The submitting author is to provide the names, affiliations, addresses, and telephone numbers of five to six individuals who are qualified to review impartially the paper and the research leading to it, and who are not employed at the same institution or company as any of the authors. While these names may or may not be used for the review, we will add them to our pool of potential reviewers. Also, a statement is to be included that the paper has not been published and is not under consideration for publication elsewhere. All permissions for previously published material used in the paper must be submitted in writing at this time.

The submitting author must also affirm that all those listed as co-authors have agreed (a) to be listed and (b) to submit the manuscript to ASTM for publication.

Five copies of the manuscript with clear copies of each figure are required. Original art work and computer disks should accompany the final revision.

Manuscript Instructions*

Word Processing Instructions

The hard-copy text can be produced on any letter-quality printer. The hard-copy text can be produced on any letter-quality printer. Text is to be printed double-spaced with left and right margins of 1 in. (25.4 mm) using left justification. New paragraphs are to be indented five spaces, and end-of-line returns are not to be used.

The revised manuscript is to be sent on a 5'/4 in. (133 mm) or 3'/4 in. (89 mm) disk preferably in WordPerfect 5.1, with the corresponding hard copies. ASTM can convert from other word-processing packages as well.

Abstract and Keywords

An abstract of 100–150 words and a list of 5–10 keywords that can be used to index the manuscript are required.

Trademarks

Commercialism is to be avoided by using generic terms whenever possible. Trademarks and trade names are to be capitalized if their use is unavoidable.

SI Units

Society policy requires the use of SI units in all publications (including figures and tables). If in.-lb. units must be used to describe materials and present test results, SI equivalents must follow in parentheses (See ASTM Standard for Metric Practice E380 for further information on SI units.)

Figures

Each figure is to be simple and uncluttered. All illustrations are to be placed together at the end of the manuscript with a separate sheet of figure captions. Consecutive Arabic (not Roman) numerals are required. The size of type in illustrations must be large enough to be legible after reduction. All lettering, lines, symbols, and other marks must be drawn in black India ink on white paper. Computer graphics must be produced by a laser printer. Photographs must be high-contrast black and white. SCALE MARKERS MUST BE SHOWN ON ALL PHOTOMICROGRAPHS AND ALL FIGURES THAT ARE REPRESENTATIONS OF EQUIPMENT OR SPECIMENS.

Tables

All tables are to be placed together at the end of the manuscript preceding the illustrations. Tables are to be numbered in Arabic and are cited in numerical order in the text. It is better to use several small simple tables than one large, complex table.

References

References shall be cited in the text by author's last name and date of publication. References shall be listed together at the end of the text in alphabetical order by author's last name. They must contain enough information to allow a reader to consult the cited material with reasonable effort.

Copyright

ASTM requires that the submitting author shall return our "Paper Submittal Form" with the revised paper assigning copyright to ASTM. For U.S. government employees whose manuscript has
been prepared as part of their official duties, it is understood that copyright in the United States is not transferrable.

Manuscript Review

Each new manuscript is sent to the Technical Editor for consideration. If the Technical Editor finds that the manuscript fits the scope of the journal, will be of interest to the readership, and is well written, the paper is processed for peer review.

Three or more reviewers, selected by the Technical Editor, review each paper for technical content, originality, logical conclusions, sound data, reproducibility of results, and clarity of presentation; two or more reviewers provide reviews of each technical note. Their comments are compiled and evaluated. The reviewers' anonymous comments and any other comments from the Technical Editor or his designee are then returned to the author for revision.

The author must submit five copies of the revised manuscript with an annotated (highlighted) version of the paper indicating clearly where each revision has been made and identifying the reviewer's comment to which the revision is responding. Changes in the text including all MANDATORY reviewers' comments must be addressed explicitly on the "Authors' Response Form" provided during revision, as well as any explanation why a change was not made.

The Technical Editor will evaluate all revised manuscripts and make the final decision regarding publication in the Journal. The Editor may (1) accept the revised manuscript for publication, (2) require further revision or explanation, or (3) reject the revised manuscript. A revised manuscript may be sent for re-evaluation to a reviewer who has found major flaws in the original manuscript.

Editorial Review by ASTM

Each accepted paper is edited by the ASTM staff for style, organization, and proper English usage. The edited manuscript is returned to the author before typesetting. The typeset page proof is also sent to the author and the Technical Editor for final review prior to printing.

If ASTM does not hear from the author by the time designated for return of the edited paper and/or page proof, ASTM will proceed with the publication process.

Book Reviews

ASTM receives books from other publishers requesting book reviews. The books are available to potential reviewers in exchange for publishable reviews. Book reviews are screened and edited by the Technical Editor and staff without peer review.

Testing Forum and Tips

Anyone having interesting test tips should submit a brief description of such innovations to the Testing Forum. Such contributions are screened and edited by the Technical Editor and staff without peer review.

Howard J. Pincus, Ph.D., P.E., C.P.G.
Technical Editor
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>atmosphere (760 mm Hg)</td>
<td>pascal (Pa)</td>
<td>1.013 25 x 10^5</td>
</tr>
<tr>
<td>board foot</td>
<td>cubic metre (m³)</td>
<td>2.359 737 x 10^-3</td>
</tr>
<tr>
<td>Btu (International Table)</td>
<td>joule (J)</td>
<td>1.055 056 x 10^2</td>
</tr>
<tr>
<td>Btu (International Table)/h</td>
<td>watt (W)</td>
<td>2.930 711 x 10^-1</td>
</tr>
<tr>
<td>Btu (International Table)/in./ft² °F</td>
<td>watt per metre kelvin [W/(m•K)]</td>
<td>5.192 204 x 10^-2</td>
</tr>
<tr>
<td>(k, thermal conductivity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>calorie (International Table)</td>
<td>joule (J)</td>
<td>4.186 800*</td>
</tr>
<tr>
<td>centipose</td>
<td>pascal second (Pas)</td>
<td>1.000 000* x 10^-3</td>
</tr>
<tr>
<td>centistokes</td>
<td>square metre per second (m²/s)</td>
<td>1.000 000* x 10^-3</td>
</tr>
<tr>
<td>circular mil</td>
<td>square metre (m²)</td>
<td>5.067 075 x 10^-10</td>
</tr>
<tr>
<td>degree Fahrenheit</td>
<td>degree Celsius</td>
<td>t°C = (t°F - 32)/1.8</td>
</tr>
<tr>
<td>foot</td>
<td>metre (m)</td>
<td>3.048 000* x 10^-1</td>
</tr>
<tr>
<td>ft²</td>
<td>square metre (m²)</td>
<td>9.290 304* x 10^-1</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic metre (m³)</td>
<td>2.831 685 x 10^-2</td>
</tr>
<tr>
<td>ft•lbf</td>
<td>joule (J)</td>
<td>1.355 818</td>
</tr>
<tr>
<td>ft•lbf/min</td>
<td>watt (W)</td>
<td>2.259 697 x 10^-2</td>
</tr>
<tr>
<td>ft/s²</td>
<td>metre per second squared (m/s²)</td>
<td>3.048 000* x 10^-3</td>
</tr>
<tr>
<td>gallon (U.S. liquid)</td>
<td>cubic metre (m³)</td>
<td>3.785 412 x 10^-3</td>
</tr>
<tr>
<td>horsepower (electric)</td>
<td>watt (W)</td>
<td>7.460 000* x 10^-2</td>
</tr>
<tr>
<td>inch</td>
<td>metre (m)</td>
<td>2.540 000* x 10^-2</td>
</tr>
<tr>
<td>in.²</td>
<td>square metre (m²)</td>
<td>6.451 600* x 10^-4</td>
</tr>
<tr>
<td>in.³</td>
<td>cubic metre (m³)</td>
<td>1.683 706 x 10^-5</td>
</tr>
<tr>
<td>inch of mercury (60°F)</td>
<td>pascal (Pa)</td>
<td>3.376 85 x 10³</td>
</tr>
<tr>
<td>inch of water (60°F)</td>
<td>pascal (Pa)</td>
<td>2.488 4 x 10²</td>
</tr>
<tr>
<td>kip (1000 lbf)</td>
<td>newton (N)</td>
<td>9.806 650* x 10^4</td>
</tr>
<tr>
<td>kip/in.² (ksi)</td>
<td>pascal (Pa)</td>
<td>4.448 222 x 10^4</td>
</tr>
<tr>
<td>ounce (U.S. fluid)</td>
<td>cubic metre (m³)</td>
<td>6.894 757 x 10^4</td>
</tr>
<tr>
<td>ounce-force</td>
<td>newton (N)</td>
<td>2.957 353 x 10^-1</td>
</tr>
<tr>
<td>ounce (avoirdupois)</td>
<td>kilogram (kg)</td>
<td>2.780 139 x 10^-1</td>
</tr>
<tr>
<td>oz (avoirdupois)/ft²</td>
<td>kilogram per square metre (kg/m²)</td>
<td>2.834 952 x 10^-2</td>
</tr>
<tr>
<td>oz (avoirdupois)/yd²</td>
<td>kilogram per square metre (kg/m²)</td>
<td>3.051 517 x 10^-1</td>
</tr>
<tr>
<td>oz (avoirdupois)/gal (U.S. liquid)</td>
<td>kilogram per cubic metre (kg/m³)</td>
<td>3.390 575 x 10^-2</td>
</tr>
<tr>
<td>pint (U.S. liquid)</td>
<td>cubic metre (m³)</td>
<td>7.489 152</td>
</tr>
<tr>
<td>pound-force (lbf)</td>
<td>newton (N)</td>
<td>4.731 765 x 10^-4</td>
</tr>
<tr>
<td>pound (lb avoirdupois)</td>
<td>kilogram (kg)</td>
<td>4.448 222</td>
</tr>
<tr>
<td>lbf/in.² (psi)</td>
<td>pascal (Pa)</td>
<td>4.535 924 x 10^-1</td>
</tr>
<tr>
<td>lbf/ft³</td>
<td>kilogram per cubic metre (kg/m³)</td>
<td>6.894 757 x 10^-1</td>
</tr>
<tr>
<td>quart (U.S. liquid)</td>
<td>cubic metre (m³)</td>
<td>2.767 990 x 10^-4</td>
</tr>
<tr>
<td>ton (short, 2000 lbf)</td>
<td>kilogram (kg)</td>
<td>1.601 846 x 10^-1</td>
</tr>
<tr>
<td>torr (mm Hg, 0°C)</td>
<td>cubic metre (m³)</td>
<td>9.465 529 x 10^-4</td>
</tr>
<tr>
<td>W•h</td>
<td>joule (J)</td>
<td>9.071 847 x 10^-3</td>
</tr>
<tr>
<td>yard</td>
<td>metre (m)</td>
<td>1.333 22 x 10^2</td>
</tr>
<tr>
<td>yd²</td>
<td>square metre (m²)</td>
<td>3.600 000* x 10^-3</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic metre (m³)</td>
<td>9.144 000* x 10^-1</td>
</tr>
</tbody>
</table>

*Exact