Composites Technology Review
Index to Volume 6
1984

<table>
<thead>
<tr>
<th>Number</th>
<th>Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spring</td>
<td>1-44</td>
</tr>
<tr>
<td>2</td>
<td>Summer</td>
<td>45-108</td>
</tr>
<tr>
<td>3</td>
<td>Fall</td>
<td>109-144</td>
</tr>
<tr>
<td>4</td>
<td>Winter</td>
<td>145-196</td>
</tr>
</tbody>
</table>

A
Acoustic emission: Fracture mode identification of composite materials by acoustic emission analysis (Rotem), Winter, 145
Adams, D. F.: see Maitishi, J. M. and Adams, D. F.
Adamson, M.: see Kong, E. S.-W., Adamson, M., and Meuller, L.
Aerospace environment: Influence of simulated space environment on the behavior of carbon-fiber-reinforced plastics with ± 45° ply orientations—Part 2 (Hartung and Bergmann), Fall, 126
Agarwal, B. D., Patro, B. S., and Kumar P.: Prediction of instability point during fracture of composite materials, Winter, 173
Al-Qureshi, H. A. and Corrêa, R.: Nomograph for thicknesses calculation in a filament-wound pressure vessel, Spring, 24

B
Bergmann, H. W.: see Hartung, W. and Bergmann, H. W.
Blake, R. A. and Hartmann, H. S.: Computer-aided ultrasonic evaluation of Fiber FP metal matrix composites, Fall, 118
Butler, R. J.: Composites at Cranfield's College of Aeronautics, Fall, 137

C
Chiao, T. T.: see Glaser, R. E., Christensen, R. M., and Chiao, T. T.
see Glaser, R. E., Moore, R. L., and Chiao, T. T.
Christensen, R. M.: see Glaser, R. E., Christensen, R. M. and Chiao, T. T.

Clements, L. L.: Fractography used to identify defective 0° graphite/epoxy specimens, Winter, 167
Composite materials
Composite interlaminar fracture: effect of matrix fracture energy (Hunston), Winter, 176
Damage development near the edges of a composite specimen during quasi-static and fatigue loading (Schulte and Stinchcomb), Spring, 3
Fracture mode identification of composite materials by acoustic emission analysis (Rotem), Winter, 145
Prediction of instability point during fracture of composite materials (Agarwal, Patro, and Kumar), Winter, 173
Spherical Kevlar 49/epoxy vessels with 430-MPa (62-ksi) burst pressures (Guess), Spring, 10
Composites
Analysis of neat resin cracking induced by rapid moisture loss (Mahishi and Adams), Winter, 159
Composites review
Engineering life prediction of composite materials: elements of a mechanistic model (Reifsnider), Fall, 124
Fractography used to identify defective 0° graphite/epoxy specimens (Clements), Winter, 167
General and specific quadratic yield functions (Feng and Yang), Spring, 19
Influence of a simulated space environment on the behavior of carbon-fiber-reinforced plastics with ± 45° orientations—Part 1 (Hartung and Bergmann), Summer, 82
Influence of simulated space environment on the behavior of carbon-fiber-reinforced plastics with ± 45° ply orientations—Part 2 (Hartung and Bergmann), Fall, 126
Life estimation of aramid/epoxy composites under sustained tension (Glaser, Moore, and Chiao), Spring, 26
Moisture diffusion and solid-state NMR investigations on the physical aging processes in network epoxy glasses (Kong, Adamson, and Meuller), Winter, 170
NMR characterization of boron trifluoride-anine catalysts used in the cure of carbon fiber/epoxy prepregs (Happe, Morgan, and Walkup), Summer, 77
Nomograph for thicknesses calculation in a filament-wound pressure vessel (Al-Qureshi and Corrêa), Spring, 24
Prediction of instability point during fracture of composite materials (Agarwal, Patro, and Kumar), Winter, 173
Symposium on bonding at the aramid-epoxy interface (Penn and Liao), Fall, 133
Survey of bolted-joint technology in composite laminates (Tsiang), Summer, 74
Theoretical relations between static strength and lifetime distributions for composites: an evaluation (Glaser, Christensen, and Chiao), Winter, 164
The use of proper shear moduli in the analysis of laminated composites (Griffin), Spring, 22
Computers
Computer-aided ultrasonic evaluation of Fiber FP metal matrix composites (Blake and Hartmann), Fall, 118
Conference reports
Annual review of VPI's center for composites materials and structures (Reifsnider), Fall, 142
Failure processes in fibre composites (Reifsnider), Fall, 142
Fiber Society (Penn). Spring, 40
Mechanics of composites review (Reifsnider), Spring, 37
Symposium on delamination and debonding of materials (Reifsnider), Summer, 99
Symposium on high-modulus fiber composites in ground transportation and high-volume applications (Reifsnider), Summer, 97
Corrêa, R.: see Al-Qureshi, H. A. and Corrêa, R.
Crack propagation: Analysis of neat resin cracking induced by rapid moisture loss (Mahishi and Adams), Winter, 159
Cracks: Fracture mechanics of sublamine cracks in composite materials (Wang), Summer, 45

D
Delamination
Composite interlaminar fracture: effect of matrix fracture energy (Hunston), Winter, 176
Fracture mechanics of sublamine cracks in composite materials (Wang), Summer, 45
Digital computers
Computer-aided ultrasonic evaluation of Fiber FP metal matrix composites (Blake and Hartmann), Fall, 118

Copyright © 1984 by ASTM International

www.astm.org
Epoxy laminates
Damage development near the edges of a composite specimen during quasi-static and fatigue loading (Schulte and Stinchcomb), Spring, 3
NMR characterization of boron trifluoride-amine catalysts used in the cure of carbon fiber/epoxy prepregs (Happe, Morgan, and Walkup), Summer, 77
Relationship between phase difference and coefficient of restitution during low velocity foreign object transverse damage of composite plates (Lab), Fall, 109

Epoxy resins: Analysis of neat resin cracking induced by rapid moisture loss (Mahishi and Adams), Winter, 159

F
Feng, W. W. and Yang, W. H.: General and specific quadratic yield functions, Spring, 19
Fibers: Studies on bonding at the aramid-epoxy interface (Penn and Liao), Fall, 133
Fibers: Life estimation of aramid/epoxy composites under sustained tension (Glaser, Moore, and Chiao), Spring, 26
Filament winding: Spherical Kevlar 49/epoxy vessels with 430-MPa (62-ksi) burst pressures (Guess), Spring, 10
Fractography: Fractography used to identify defective 0/90 graphite/epoxy specimens (Elements), Winter, 167
Fracture mechanics: Composite interlaminar fracture: effect of matrix fracture energy (Hunston), Winter, 176
Prediction of instability point during fracture of composite materials (Agarwal, Patro, and Kumar), Winter, 170
Fractures (materials): Fracture mode identification of composite materials by acoustic emission analysis (Rotem), Winter, 145

G
Gibson, R. F.: Composite materials education and research at the University of Idaho, Summer, 91
Glaser, R. E., Christensen, R. M., and Chiao, T. T.: Theoretical relations between static strength and lifetime distributions for composites: an evaluation, Winter, 164
Glaser, R. E., Moore, R. L., and Chiao, T. T.: Life estimation of aramid/epoxy composites under sustained tension, Spring, 26
Graphite composites: Damage development near the edges of a composite specimen during quasi-static and fatigue loading (Schulte and Stinchcomb), Spring, 3
Griffin, O. H., Jr.: The use of proper shear moduli in the analysis of laminated composites, Spring, 22
Guess, T. R.: Spherical Kevlar 49/epoxy vessels with 430-MPa (62-ksi) burst pressures, Spring, 10

H
Happe, J. A., Morgan, R. J., and Walkup, C. M.: NMR characterization of boron trifluoride-amine catalysts used in the cure of carbon fiber/epoxy prepregs, Summer, 77

Hartmann, H. S.: see Blake, R. A. and Hartmann, H. S.
Hartung, W. and Bergmann, H. W.: Influence of a simulated space environment on the behavior of carbon-fiber-reinforced plastics with ±45° ply orientations—Part 1, Summer, 82
Hartung, W. and Bergmann, H. W.: Influence of simulated space environment on the behavior of carbon-fiber-reinforced plastics with ±45° ply orientations—Part 2, Fall, 126
Hygrothermal effects: Hygrothermal effects on stresses and deformations in a bonded fiber-reinforced plastic/aluminum system (Yaniv and Ishai), Summer, 63

I-K
Impact: Relationship between phase difference and coefficient of restitution during low velocity foreign object transverse damage of composite plates (Lab), Fall, 109
Impact strength testing: Coefficient of restitution for low velocity transverse impact of thin graphite-epoxy laminates (Lab), Fall, 112
Ishai, O.: see Yaniv, G. and Ishai, O.
Isotropy: General and specific quadratic yield functions (Feng and Yang), Spring, 19
Joints (junctions): Survey of bolted-joint technology in composite laminates (Tsiang), Summer, 74
Kong, E. S.-W., Adamson, M., and Meuller, L.: Moisture diffusion and solid-state NMR investigations on the physical aging processes in network epoxy glasses, Winter, 170
Kumar, P.: see Agarwal, B. D., Patro, B. S., and Kumar, P.

L
Lal, K. M.: Coefficient of restitution for low velocity transverse impact of thin graphite-epoxy laminates, Fall, 112
Relationship between phase difference and coefficient of restitution during low velocity foreign object transverse damage of composite plates, Fall, 109
Laminates: Coefficient of restitution for low velocity transverse impact of thin graphite-epoxy laminates (Lab), Fall, 112
Engineering life prediction of composite materials: elements of a mechanistic model (Reifsnider), Fall, 124
Liao, T. K.: see Penn, L. S. and Liao, T. K.

Literature reviews
Ceramic Coatings for Heat Engine Materials—Status and Future Needs by Stinton et al (Reifsnider), Fall, 180
Determination of the Effect of Strain Rate on the Mechanical Properties of Graphite Epoxy Laminates by Alper (Reifsnider), Summer, 95
Failure Criteria for Composite Structures by Beaubien et al (Reifsnider), Fall, 139
The Mechanics of Delamination in Fibre-Reinforced Composite Materials by Alper (Reifsnider), Summer, 93

M-N
Mahishi, J. M. and Adams, D. F.: Analysis of neat resin cracking induced by rapid moisture loss, Winter, 159
Meuller, L.: see Kong, E. S.-W., Adamson, M., and Meuller, L.
Moisture: Moisture diffusion and solid-state NMR investigations on the physical aging processes in network epoxy glasses (Kong, Adamson, and Meuller), Winter, 170
Moore, R. L.: see Glaser, R. E., Moore, R. L., and Chiao, T. T.
Morgan, R. L.: see Happe, J. A., Morgan, R. J., and Walkup, C. M.

Nomographs: Nomograph for thicknesses calculation in a filament-wound pressure vessel (Al-Qureshi and Corra), Spring, 24

Plastics
Influence of a simulated space environment on the behavior of carbon-fiber-reinforced plastics with ±45° ply orientations—Part 1 (Hartung and Bergmann), Summer, 82
Influence of simulated space environment on the behavior of carbon-fiber-reinforced plastics with ±45° ply orientations—Part 2 (Hartung and Bergmann), Fall, 126
Plates: Relationship between phase difference and coefficient of restitution during low velocity foreign object transverse damage of composite plates (Lai), Fall, 109

Polymers: Moisture diffusion and solid-state NMR investigations on the physical aging processes in network epoxy glasses (Kong, Adamson, and Meuller), Winter, 170

Pressure vessels
Nomograph for thicknesses calculation in a filament-wound pressure vessel (Al-Qureshi and Corra), Spring, 24
Spherical Kevlar 49/epoxy vessels with 430-MPa (62-ksi) burst pressures (Guess), Spring, 10

Q-R
Quadratic equations: General and specific quadratic yield functions (Feng and Yang), Spring, 19
Reifsnider, K. L.
Annual review of VPI's center for composites materials and structures, Fall, 142
Engineering life prediction of composite materials: elements of a mechanistic model, Fall, 124
Failure processes in fiber composites, Fall, 142
Mechanics of composites review, Spring, 37
Review of Ceramic Coatings for Heat Engine Materials—Status and Future Needs by Stinton et al, Fall, 140
Review of Determination of the Effect of Strain Rate on the Mechanical Properties of Graphite Epoxy Laminates by Alper, Summer, 95
Review of Failure Criteria for Composite Structures by Beaubien et al, Fall, 139
Review of The Mechanics of Delamination in Fiber-Reinforced Composite Materials by Alper, Summer, 93
Symposium on delamination and debonding of materials, Summer, 99
Symposium on high-modulus fiber composites in ground transportation and high-volume applications, Summer, 97
Rotem, A.: Fracture mode identification of composite materials by acoustic emission analysis, Winter, 145

S
Schulte, K. and Stinchcomb, W. W.: Damage development near the edges of a composite specimen during quasi-static and fatigue loading, Spring, 3
Shear modulus: The use of proper shear moduli in the analysis of laminated composites (Griffin), Spring, 22
Shear strength: Coefficient of restitution for low velocity transverse impact of thin graphite-epoxy laminates (Lal), Fall, 112
Space environment simulation: Influence of a simulated space environment on the behavior of carbon-fiber-reinforced plastics with ±45° orientations—Part 1 (Hartung and Bergmann), Summer, 82
Stinchcomb, W. W.: see Schulte, K. and Stinchcomb, W. W.
Stochastic processes: Fracture mechanics of sublamine cracks in composite materials (Wang), Summer, 45
Strength: Theoretical relations between static strength and lifetime distributions for composites: an evaluation (Glaser, Christensen, and Chiao), Winter, 164
Stress: Survey of bolted-joint technology in composite laminates (Tsiang), Summer, 74
Stresses: The use of proper shear moduli in the analysis of laminated composites (Griffin), Spring, 22

T-V
Tensile impact strength: Engineering life prediction of composite materials: elements of a mechanistic model (Reifsnider), Fall, 124
Tension: Life estimation of aramid/epoxy composites under sustained tension (Glaser, Moore, and Chiao), Spring, 26
Thermoelasticity: Hygrothermal effects on stresses and deformations in a bonded fiber-reinforced plastic/aluminum system (Yaniv and Ishai), Summer, 63
Tsiang, T.-H.: Survey of bolted-joint technology in composite laminates, Summer, 74
Ultrasonic tests: Computer-aided ultrasonic evaluation of Fiber FP metal matrix composites (Blake and Hartmann), Fall, 118
Viscoelasticity: Hygrothermal effects on stresses and deformations in a bonded fiber-reinforced plastic/aluminum system (Yaniv and Ishai), Summer, 63

W-Z
Walkup, C. M.: see Happe, J. A., Morgan, R. J., and Walkup, C. M.
Wang, A. S. D.: Fracture mechanics of sublamine cracks in composite materials, Summer, 45
World of Composites
Composites at Cranfield's College of Aeronautics (Butler), Fall, 137
Composite materials education and research at the University of Idaho (Gibson), Summer, 91
Determining mechanical properties in severe thermal environments (Zelnick), Spring, 36
PLASTEC Can Help, Spring, 36
Powerboat races relies on composites. Winter, 103
SPI RP/C 40th annual conference, Winter, 107
Yang, W. H.: see Feng, W. W. and Yang, W. H.
Yaniv, G. and Ishai, O.: Hygrothermal effects on stresses and deformations in a bonded fiber-reinforced plastic/aluminum system, Summer, 63
Zelnick, P. J.: Determining mechanical properties in severe thermal environments, Spring, 36