Composites Contents

Listing of current literature of interest to the composites community as a service to our readers.

Introduction

In this section, the relevant portions of the tables of contents of current journals that publish composites articles are reproduced. The entire tables of contents are reproduced for dedicated composites journals, but only the composites-related articles of non-dedicated journals are shown. At this time, permission to reproduce the tables of contents has been granted by the following journals:

- AIAA Journal
- Cement and Concrete Composites
- Composites
- Composites Engineering
- Composites Science and Technology
- Composite Structures
- Computers and Structures
- Engineering Fracture Mechanics
- Experimental Mechanics
- Experimental Techniques
- International Journal of Fracture
- International Journal of Solids and Structures
- Journal of Adhesion
- Journal of Advanced Materials
- Journal of Applied Mechanics
- Journal of Composite Materials
- Journal of Engineering Materials and Technology
- Journal of Materials Science
- Journal of Reinforced Plastics and Composites
- Journal of Sound and Vibration
- Journal of Testing and Evaluation
- Mechanics of Composite Materials
- Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis
- Polymer Composites
- Polymers and Polymer Composites
- SAMPE Journal
- The Shock and Vibration Digest

The Editor welcomes suggestions for improvements to "Composites Contents," although library acquisition and accessibility may prevent some additions to the list of journals surveyed.

Dr. Ronald F. Gibson, Contents Editor
Advanced Composites Research Laboratory
Department of Mechanical Engineering
Wayne State University
Detroit, MI 48202

James R. Ruffner, Contents Source
Science and Engineering Library
Wayne State University

AIAA Journal

Vol. 34, No. 7, July 1996

Bimodal Bound of System Reliability for Random Composite Structures—J. S. Park, C. G. Kim, and C. S. Hong, pp. 1494–1500

Viscoelastic Analysis of Thick-Walled Filament-Wound Composite Cylinders with Elevated Temperatures (TN)—J. T. Tzeng and L. S. Chien, pp. 1526–1530

Vol. 34, No. 8, August 1996
Central and Noncentral Normal Impact on Orthotropic Composite Cylindrical Shells—S. W. Gong, V. P. W. Shim, and S. L. Toh, pp. 1619–1626

Analytical Solution for Low-Velocity Impact Response of Composite Plates—M. O. Pierson and R. Vaziri, pp. 1633–1640

Vol. 34, No. 9, Sept. 1996
Modal Control of Piezolaminated Anisotropic Rectangular Plates Part 1: Modal Transducer Theory—S. E. Miller, Y. Oshman, and H. Abramovich, pp. 1868–1875

Modal Control of Piezolaminated Anisotropic Rectangular Plates part 2: Control Theory—S. E. Miller, Y. Oshman, and H. Abramovich, pp. 1876–1884

Cross-Sectional Analysis of Composite Beams Including Large Initial Twist and Curvature Effects—C. E. S. Cesnik, D. H. Hodges, and V. G. Sutyrin, pp. 1913–1920

© 1997 by the American Society for Testing and Materials

http://www.astm.org
Experimental Investigation of Blade-Stiffened Panel with Stiffener-to-Skin Fiber Stitching—C.-. W. Chang and W.-B. Young, pp. 1964–1965

Vol. 34, No. 10, Oct. 1996
Governing Equations of a Stiffened Laminated Inhomogeneous Conical Shell—Z. Mecitoglu, pp. 2118–2125

Vol. 34, No. 11, Nov. 1996
Layerwise Mechanics and Finite Element Model for Laminated Piezoelectric Shells—P. Heyliger, K. C. Pei, and D. Saravanos, pp. 2353–2360
Nonlinear Analysis of Imperfect Metallic and Laminated Cylinders Under Bending Loads—X. Huyan, G. J. Simites, and A. Tabiei, pp. 2406–2413

Cement and Concrete Composites

Vol. 18, No. 2, 1996
Mechanical Properties of Polypropylene Fiber Reinforced Concrete and the Effects of Pozolanic Materials—A. M. Alhozaimy, P. Soroushian, and F. Mirza, pp. 85–92
Factors Affecting Cementitious Matrix of Epoxy Coatings for Steel Reinforcing Bars—J. S. McHattie, J. L. Perez, and J. A. Kehr, pp. 93–104
Compaction Properties of Roller Compacted Concrete—K. Kokubu, J. G. Cabrera, and A. Ueno, pp. 109–118
Model for Predicting the Fracture Process Zone and R-Curve for High Strength FRC—A.-B. Eissa and G. Batson, pp. 125–134
The Use of Rubber Tire Particles in Concrete to Replace Mineral Aggregates—H. A. Toutanji, pp. 135–140
Stress Analysis of a Fracture Test Specimen for Cementitious Materials—B. B. Sabir and M. Asili, pp. 141–152

Vol. 18, No. 3, 1996
An Experimental Clarification of the Association of Delayed Ettringite Formation with Alkali-Aggregate Reaction—A. Shayan and I. Ivanusec, pp. 161–170
The Effect of Cement Composition and Fineness on Expansion Associated with Delayed Ettringite Formation—S. Kelham, pp. 171–180
The Role of Sulfite Mineralogy and Cure Temperature in Delayed Ettringite Formation—F. P. Glasser, pp. 187–194

Vol. 18, No. 4, 1996
Guest editorial, p. 221
Toughening in Cement Based Composites, Part I: Cement, Mortar, and Concrete—V. C. Li and M. Maalej, pp. 223–238
Toughening in Cement Based Composites. Part II: Fiber Reinforced Cementitious Composites—V. C. Li and M. Maalej, pp. 239–250
Fracture Toughness of Micro-Fiber Reinforced Cement Composites—N. Banthia and J. Sheng, pp. 251–270
Optimization of the Material Structure and Composition of Cement Based Composites—A. M. Brandt and M. Marks, pp. 271–280

Vol. 18, No. 5, 1996
Application of FRC in Construction of the Underground Railway Track—A. M. Brandt, M. A. Glinicki, and J. Potrzebowski, pp. 305–312
The Effect of Processing on the Bond and Interfaces in Steel Fiber Reinforced Cement Composites—S. Igarashi, A. Bentur, and S. Mindess, pp. 313–322
Interaction Between Concrete Cladding Panels and Fixings Under Blast Loading—Y. G. Pan and A. J. Watson, pp. 323–332
Strength Development and Drying Shrinkage of High-Strength Concretes—M. N. Haque, pp. 333–342

Composite Structures

Vol. 34, No. 4, 1996
A Micromechanical Analysis to Predict the Cord-Rubber Composite Properties—R. M. V. Pidaparti and A. W. May, pp. 361–370
Accurate Free Vibration Analysis of Clamped Antisymmetric Angle-Ply Laminated Rectangular Plates by the Superposition-Galerkin Method—D. J. Gorman and W. Ding, pp. 387–396
Analysis of Composite Laminates with Transverse Cracks—T. E. Tay and E. H. Lim, pp. 419–426
Stress Distributions in Multi-Fastened Composite Plates—A. P. Blackie and S. Shutima, pp. 427–436
Bending Analysis of Antisymmetric Angle-Ply Laminated Plates Including Transverse Shear Effects—J.-F. He and Z.-Z. Zhang, pp. 437–444

Vol. 35, No. 1, 1996
Buckling of Thick-Section Composite Pressure Hulls—D. Graham, pp. 5–20
Thermomechanical Coupling Effects on the Dynamic Inelastic Response and Buckling of Metal Matrix Composite Infinitely Wide Plates—R. Gilat and J. Aboudi, pp. 49–64
The Effect of Temperature-Dependent Material Properties on Elasto-Viscoplastic Buckling Behaviour of Non-Uniformly Heated MCM Plates—E. Feldman, pp. 65–74
Buckling Behaviour of Laminated Composite Structures Using a Discrete High-order Displacement Model—J. Simoes Moita, C. M. Mota Soares, and C. A. Mota Soares, pp. 75–92
A Semi-Analytical Approach to Buckling Analysis for Composite Structures—J. Rhodes, pp. 93–100
The Buckling of Composite Stiffened Box Sections Subject to Prebuckling, Buckling and Postbuckling Strength Using Continuous and Discrete Ply Angles—S. Adali, M. Walker, and V. E. Verijenko, pp. 117–130
Experimental Study on Physical Properties of Compression Molded SMC Parts Under Plane Strain Condition—K.-T. Kim and Y.-T. Im, pp. 131–142
Stresses and Failure Patterns in the Bending of Sandwich Beams with Transversely Flexible Cores and Laminated Composite Skins—Y. Shenhar, Y. Forstig, and E. Altus, pp. 143–152
Composite Fatigue Design Methodology: a Simplified Approach—T. Nyman, pp. 183–194
The Structural Damping of Composite Beams with Tapered Boundaries—M. Coni, B. Benchechou and R. G. White, pp. 207–212
Linear Transient Analysis of Rectangular Laminated Plates by a Finite Strip-Mode Superposition Method—J. Chen and D. J. Dawe, pp. 213–228
A Simple Nonlocal Damage Model for Predicting Failure of Notched Laminates—T. C. Kennedy and M. F. Nahan, pp. 220–236
Modeling and Shape Control of Composite Beams with Embedded Piezoelectric Actuators—P. Donthireddy and K. Chandrashekara, pp. 237–244
Vibration Damping Using Piezoelectric Stiffener-Actuators with Application to Orthotropic Plates—V. Birman and S. Adali, pp. 251–262
Procedures Developed for Self-Repair of Polymer Matrix Composite Materials—C. Dry, pp. 263–270
Modeling of a Cracked Metallic Structure with Bordered Composite Patch Using the Three Layer Technique—S. Naboulsi and S. Mall, pp. 295–308
Numerical Study of Anchors for Composite Prestressing Straps—S. Maravegias and T. C. Triantafillou, p. 323

Composites

Vol. 27A, No. 7, 1996
Effect of Support Matrix on Interfacial Shear Strength Determination by the Bimatrix Fragmentation Technique—F. Chen, D. Tripathi, and F. R. Jones, pp. 505–516
Flexural Properties of Stitched GRP Laminates—A. P. Mouritz, pp. 525–530
The Effect of Short Carbon Fibre Reinforcement on Fatigue Crack Growth in PEEK—W. J. Evans, D. H. Isaac, and K. S. Saib, pp. 547–554
Ribbonizing of Electrostatic Powder Spray Impregnated Thermoplastic Tows by Pultrusion—N. C. Parasnis, K. Ramani, and H. M. Borgaonkar, pp. 567–574
Ballistic Impact of Fibre Composite Armours by Fragment-Simulating Projectiles—M. J. Iremonger and A. C. Went, pp. 575–582

Vol. 27A, No. 8, 1996
Time-Temperature Failure Analysis of Epoxies and Unidirectional Glass/Epoxy Composites in Compression—K. Padmanabhan, pp. 585–596
The Influcne of Cyclic Fatigue Damage on the Fracture Toughness of Carbon-Carbon Composites—A. Ozturk, pp. 641–646
A Study of Tension Test Specimens of Laminated Hybrid Composites: 1: Methods of Approach—H. F. Wu and L. L. Wu, pp. 647–654

Vol. 27A, No. 9, 1996
Special Issue
Formation and Structure of Reaction Layers in SiC/Glass and SiC/SiC Composites—A. Hahnell, E. Pippel, R. Schneider, J. Woltersdorf, and D. Sutton, pp. 685–690

EPMA and XPS Studies of the TiAl-SiC Interfacial Chemical Compatibility—J.-F. Silvain, J.-C. Bihr, and Y. Lepetitcorps, pp. 691–696

Diffusivity of Carbon in the Copper Matrix. Influence of Alloying—S. Dorfman and D. Fuks, pp. 697–702

Interfaces of SiC Fibres and Al-5% Mg Developed Under Systematically Varied Processing Conditions—S. Long and H. M. Flower, pp. 703–708

The Effect of Matrix Yield Strain on the Data Reduction Technique of the Single-Filament Fragmentation Test—D. Tripathi, F. Chen, and F. R. Jones, pp. 709–716

Microstructural Characterization of SiC/YMAS Composites in the As-Received State and After Thermomechanical Tests—J. Vicens, F. Doreau, and J.-L. Carmant, pp. 723–728

Interfacial Failure in Ceramic Fibre/Glass Composites—R. J. Young and X. Yang, pp. 737–742

Effect of Fibre Sizing on the Stress Transfer Efficiency in Carbon/Epoxy Model Composites—A. Paipetis and C. Galiotis, pp. 755–768

Atomistic Modelling of the Adsorption of Epoxy and Amine Molecules on the Surface of Carbon Fibres—D. Attwood and P. I. Marshall, pp. 775–780

Comparative AES and EPMA Studies of Diffusion Profiles of Al-Au-C and AS7G0.6-Au-C Interfaces—J. F. Silvain, M. R. Turner, and M. Lahaye, pp. 793–798

Elevated Temperature Interfacial Behavior of MMCs: a Computational Study—C. R. Ananth and N. Chandra, pp. 805–812

Interfacial Crack Growth in Thermomechanically Loaded Bimaterial Joints—K. P. Herrmann, A. Noe, and M. Dong, pp. 813–820

Evaluation of Residual Stresses and Adhesion in Polymer Composites—L. DiLandro and M. Pogoraro, pp. 847–854

The Role of Interphase Debonding on Cumulative Fracture Behaviour in a Continuous Fibre-Reinforced Composite—A. T. Dibenedetto and K. D. Jones, pp. 869–880

Vol. 27A, No. 10, 1996

Towards the Fastenerless Composite Design—L. P. V. M. VanRijn, pp. 915–920

Interlaminar Failure of Unidirectional Glass/Epoxy Due to Combined Through Thickness Shear and Tension—M. R. Wisnom, Z. J. Petrossian, and M. I. Jones, pp. 921–930

Quick Cure of Thermosetting Composites—T. A. Gorovaya and V. N. Korotkov, pp. 953–960

Interfacial Micromechanics in Thermoplastic and Thermosetting Matrix Carbon Fibre Composites—Y. Huang and R. J. Young, pp. 973–980

Vol. 27A, No. 11, 1996

Prediction of Stress-Strain Response of SCS-6/Timeal-21S Subjected to a Hypersonic Flight Profile—M. Mirdamadi and W. S. Johnson, pp. 1033–1040

Surface Treatment for Adhesive-Bonded Joints by Excimer Laser—L. M. Galantucci, A. Gravina, G. Chita, and M. Cinquepalmi, pp. 1041–1050

Further Developments in Testing and Analysis of the Plate Twist Test for In-Plane Shear Modulus Measurements—B. Gommers, I. Verpoest, and P. Van Houette, pp. 1085–1088

Interlaminar Tensile Strength (ILTS) Measurement of Woven Glass/Polyester Laminates Using a Four-Point Curved Beam Specimen—W. Cui, T. Liu, J. Len, and R. Ruq, pp. 1097–1106

Vol. 27B, Nos. 3-4, 1996

A Methodology for Evaluation of the Use of Advanced Composites in Structural Civil Engineering Applications—M. El-mikawi and A. S. Mosallam, pp. 203–216

Experimental Investigation on Structural Repair and Strengthening of Damaged Prestressed Concrete Slabs Utilizing Externally Bonded Carbon Laminates—M. A. Shahawy, T. Beitelman, M. Arockiasamy, and R. Sowrirajan, pp. 217–224

Reinforced Concrete Rectangular Beams Strengthened with CFRP Laminates—M. A. Shahawy, M. Arockiasamy, T. Beitelman, and R. Sowrirajan, pp. 225–234

Analysis of Concrete Beams Reinforced With Externally Bonded Woven Composite Fabrics—V. N. Kaliakin, M. J. Chajes, and T. F. Januszka, pp. 235–244

Fiber-Reinforced Plastic Rebars for Concrete Applications—O. Chaallal and B. Bennokrane, pp. 245–252

Static Flexural Response of Members Pretensioned with Multiple Layered Aramid Fiber Tendons—M. A. Shahawy, T. Beitelman, M. Arockiasamy, and S. Sandepudi, pp. 253–262

A New Concrete-Filled Hollow FRP Composite Column—A. Mirmiran and M. Shahawy, pp. 263–268

Low-Drying-Shrinkage Concrete Containing Carbon Fibers—P. W. Chen and D. D. L. Chung, pp. 269–274

Effect of Fiber Diameter Variation on Properties of Cement-Based Matrix Fiber Reinforced Composites—V. C. Li and K. Obla, pp. 275–284

Static Shear Correction Factor for Laminated Rectangular Beams—P. Madabushi-Raman and J. F. Dalvalos, pp. 285–294

Analysis and Design Methodology for an FRP Cable-Stayed Pedestrian Bridge—M. A. Khalifa, O. A. Hodhod, and M. A. Zaki, pp. 307–318

Modal Characteristics of Structural Portal Frames Made of Mechanically Jointed Pultruded Flat Hybrid Composites—R. Ahmadian and P. Raju Mantena, pp. 319–328

Low-Temperature and Freeze-Thaw Durability of Thick Composites—F. K. Dutta and D. Hui, pp. 371–380

Probabilistic Micromechanical Model of Creep-Rupture in Filamentary Composites—K. T. Slattery, pp. 381–386

An Approach to Optimization of Shape Memory Alloy Hybrid Composite Plates Subjected to Low-Velocity Impact—V. Birman, K. Chandrashekhara, and S. Sain, pp. 439–446

Experimental Investigation of the Ballistic Resistance of Steel-Fiberglass Reinforced Polyester Laminated Plates—A. A. Almohandes, M. S. Abdel-Kader, and A. M. Eleiche, pp. 447–458

Delaminations at the Free Edge of a Composite Laminate—G. S. Amrutharaj, K. Y. Lam, and B. Cotterell, pp. 475–484

Formulation of an Improved Smearred Stiffener Theory for Buckling Analysis of Grid-Stiffened Composite Panels—N. Jaunky, N. F. Knight, Jr., and D. R. Ambur, pp. 519–526

Composite Science and Technology

Vol. 56, No. 4, 1996

Interlaminar Shear Behavior of Plain-Weave GRP at Static and High Rates of Strain—H. Heber and J. M. Lifshitz, pp. 391–406

Designing Quasi-Isotropic Laminates with Respect to Bending—R. Paradies, pp. 461–472

Thick-Section AS4-Graphite/E-Glass/PPS Hybrid Composites—Part II. Flexural Response—S. C. Khatri and M. J. Koczak, pp. 473–482

Vol. 56, No. 5, 1996

Effective Average Permeability of Multi-Layer Preforms in Resin Transfer Molding—V. M. A. Calado and S. G. Advani, pp. 519–532

Interfacial Shear Strength in Glass-Fiber/Vinylester-Resin Composites—X. Dirand, B. Hilaire, J. P. Soulier, and M. Nardin, pp. 533–540

Effect of Interfacial Decohesion on Stiffness Reduction in a Random Discontinuous-Fibre Composite Containing Matrix Microcracks—F. Meraghi, C. J. Blakeman, and M. L. Benzegagh, pp. 541–556

Damage and Inelastic Deformation Mechanisms in Notched Thermoset and Thermoplastic Laminates—F. Touchard-Lagattu and M. C. Lafarie-Frenot, pp. 557–568

Vol. 56, No. 6, 1996

Determination of the Interfacial Shear Strength of Glass-Fibre-Reinforced Phenolic Composites by a Bimatrix Fragmentation Technique—F. Chen, D. Tripathi, and F. R. Jones, pp. 509–622

Designing with 4-Step Braided Fabric Composites—R. Pandey and H. T. Hahn, pp. 623–634

Prediction of Fatigue Damage and Life for Composite Laminates Under Service Loading Spectra—L. J. Lee, K. E. Fu, and J. N. Yang, pp. 635–648

Effects of Fiber and Interphase on Matrix-Initiated Transverse Failure in Polymer Composites—L. E. Asp, L. A. Berglund, and R. Talreja, pp. 657–666

The Transverse Failure of a Single-Fiber Metal-Matrix Composite: Experiment and Modeling—S. Hu, pp. 667–676

Vol. 56, No. 7, 1996

Guest Editorial—A. Vautrin, pp. 707–710

Hydrolytic Stability of Unsaturated Polyester Prepolymers—F. Belan, V. Bellenger, B. Mortaigne, J. Verdu, and Y. S. Yang, pp. 733–738

New Sol-Gel Matrices of Chemically Stable Composites of BAS, NAS and CAS—PH. Colomban and N. Lapous, pp. 739–748

Study of Carbon-Fibre Strain in Model Composites by Raman Spectroscopy—D. Leveque and M.-H. Auvray, pp. 749–754

Physical Chemistry of the Interfacial e in Polypropylene/Cellulosic-Fibre Composites—C. Joly, R. Gauthier, and B. Chabert, pp. 761–766

Damage Mechanisms of a Woven SiC/SiC Composite: Modelling and Identification—A. Gasser, P. Ladeveze, and M. Poss, pp. 779–784

2D and 3D Numerical Models of Transverse Cracking in Cross-Ply Laminates—P. Leblond, A. ElMahi, and J.-M. Berthelot, pp. 793–796

Modelling of Flexural Fatigue Behaviour in UD Glass-Fibre-Reinforced Polymer—M. Salvia and L. Vincent, pp. 797–802
Evaluation of A1-Cu-Mg-Ag Alloys Containing Discontinuous
Direct Measurement of Crack-Bridging Trawctions: A New
Fracture Behaviour of Polypropylene-Fibre-Reinforced Concrete
The Dynamic Properties of Fibre-Reinforced Polymers Exposed
Characterization of Fiber/Matrix Interfaces in Composites with a
Effects of Prestrain on the Fatigue Properties of VIRALL Lami-
The Use of Heterogeneous Strain Fields for the Characterization
Cyclic Fatigue of Ceramic-Matrix Composites at Ambient and
Estimation of Weibull Parameters From Loose-Bundle Tests—
Multi-Scale Approach to the Compressive Strength of Carbon/
Multi-Scale Approach to the Compressive Strength of Carbon/
Vol. 56, No. 8, 1996
Analysis and Evaluation of the Single-Fibre Fragmentation
Electrical percolation Behavior of Short-Fiber Composites: Experi-
Modelling and Identification of Temperature-Dependent Mechanical
The Control of Fibre Orientation in Ceramic and Metal Composites
by Open-Ended Injection Moulding—T. Zhang, J. R. G. Evans,
Effects of Prestrain on the Fatigue Properties of VIRALL Lami-
Fracture Behaviour of Polypropylene-Fibre-Reinforced Concrete
Fracture Behaviour of Polypropylene-Fibre-Reinforced Concrete
Fracture Behaviour of Polypropylene-Fibre-Reinforced Concrete:
Modelling and Computer Simulation—M. Elser, E. K. Tschech,
Evaluation of Al-Cu-Mg-Ag Alloys Containing Discontinuous
Characterization of Fiber/Matrix Interfaces in Composites with a
The Dynamic Properties of Fibre-Reinforced Polymers Exposed
Computers & Structures
Vol. 60, No. 2, 1996
Buckling and Postbuckling of Composite Panels with Cutouts
Subjected to Combined Edge Shear and Temperature Change—A. K. Noor and Y. H. Kim, pp. 203-222
Load Distribution in Composite Multifastener Joints—Z. MeiYing, Y. Ling, and W. XiaoPeng, pp. 337-342
Vol. 60, No. 3, 1996
An Improved Simple Higher-Order Theory for Laminated Com-
polymeric Composite Shells—S. Xiao-ying, pp. 343-350
Vol. 60, No. 5, 1996
Nonlinear and Postbuckling Analyses of Curved Composite Panels
Subjected to Combined Temperature Change and Edge Shear—A. K. Noor and J. M. Peters—pp. 853-874
Optimal Design of a Dynamic Absorber Using Polymer-Laminated
Steel Sheets—T. Teng, C.-C. Liang and C.-C. Liao, pp. 981-988
A Finite Element Model for Delamination Propagation in Compos-
ites—D. Hitchings, P. Robinson, and F. Javidrad, pp. 1093-1104
Vol. 61, No. 1, 1996
Stress Analysis of Laminated E-Glass Epoxy Composite Plates
Subject to Impact Dynamic Loading—W. J. Liou, C. I. Tseng,
and L. P. Chao, pp. 1-12
Stress Concentrations and Failure Criteria in Anisotropic Plates
with Circular Holes Subjected to Tension or Compression—
M. Y. Kaltakci, pp. 79-86
Buckling and Post-Buckling Analysis of Moderately Thick Lami-
nated Rectangular Plates—P. Sundaresan, G. Singh, and G. Ven-
kateswara Rao, pp. 79-86
Vol. 61, No. 2, 1996
Identical Probability Distribution of First-Ply Failure Strains and
Design Allowables Computation Based on Multi-Sample Data of Composite Laminates—T. Zhu and C. Zhang, pp. 225-230
Sensitivity Analysis of the Contact/Impact Response of Composite
Structures—G. D. Pollock and A. K. Noor, pp. 251-270
Behaviour of Antisymmetric Angle-Ply Laminated Plates Using the Affine Transformation—Y.-S. Lee and M.-S. Yang, pp. 375-384
Vol. 61, No. 3, 1996
Vibration of Thick Laminated Cylindrical Panels by the Spline
Strip Method—T. Miusawa, pp. 441-458
Inelastic Analysis of Reinforced Concrete Beams Subjected to
Combined Torsion, Flexural and Axial Loads—G. M. Cocchi
and M. Volpi, pp. 479-494
Analysis of Nonlinear Vibration of Hybrid Composite Plates—
Y.-S. Lee and Y.-W. Kim, pp. 573-578
Parametric Instability of a Dual-Cored Sandwich Beam—K. Ray and R. C. Kar, pp. 665–672
Linear Vibration Analysis of Laminated Rectangular Plates Using the Hierarchical Finite Element Method—W. Han and M. Petyt, pp. 705–712
Linear Vibration Analysis of Laminated Rectangular Plates Using the Hierarchical Finite Element Method—W. Han and M. Petyt, pp. 713–724

Vol. 61, No. 5, 1996
Stresses Around Extremely Large or Interacting Multiple Holes in Orthotropic Composites—J. Rhee and R. E. Rowlands, pp. 935–950

Engineering Fracture Mechanics

Vol. 54, No. 4, 1996
Flexural Failure of Notched Curved Composite Beams—B. A. Cheeseman, M. H. Santare, and B. J. O’Toole, pp. 479–498
Moving Griffith Crack at the Interface of Two Dissimilar Orthotropic Half Planes—S. Das and B. Patra, pp. 523–532

Vol. 54, No. 5, 1996
Boundary Element Analysis of Orthotropic Delamination Specimens with Interface Cracks—H. E. Ang, J. E. Torrance, and C. L. Tan, pp. 601–616

Vol. 54, No. 6, 1996
Analytical Stress Around Mode II Crack Parallel to Principle Axis in Orthotropic Composite Plate—C. D. Liu, pp. 791–804

Vol. 55, No. 1, 1996
Boundary Element Evaluation of Stress Intensity Factors for Interface Edge Cracks in a Unidirectional Composite—S. S. Lee, pp. 1–6
The Problem of an orthotropic Semi-Infinite Strip with a Crack Along the Fixed End—V. V. Loboda, pp. 7–18

Vol. 55, No. 2, 1996

Vol. 55, No. 3, 1996
Effects of Three-Dimensional Constraint on Cracks on Bimaterial Interfaces—S. Wang, W. Guo, and Y. Shen, pp. 471–484

Vol. 55, No. 4, 1996
Effect of Stacking Sequence on Energy Release Rate Distributions in Multidirectional DCB and ENF Specimens—B. D. Davidson, R. Kruger, and M. Konig, pp. 557–570

Vol. 55, No. 5, 1996

Experimental Mechanics

Vol. 36, No. 2, 1996
An Experimental Investigation of Composite Repair—K. B. Zimmerman and D. Liu, pp. 142–147
The Effect of Laminations on the Vibrational Modes of Circular Annular Plates—K. Williams and H. Wang, pp. 180–192

Vol. 36, No. 3, 1996
Stress Analysis of an Orthotropic Material Under Diametral Compression—R. K. Lemmon and D. M. Blackketter, pp. 204–211
Acoustic Emission in Fiber Reinforced Concrete—A. Kumar and A. P. Gupta, pp. 258–261
Temperature and Rate Effects on Stable Crack Growth in a particulate Composite Material—C. T. Liu and C. W. Smith, p. 290

International Journal of Fracture

Vol. 75, No. 4, 1996
Plastic Zones in an Orthotropic Plate of Finite Width Containing a Griffith Crack—H. T. Danylyuk, B. M. Singh, and J. Vrbik, pp. 307–322

Vol. 76, No. 1, 1996
Analytical Solution for Orthotropic Composite Plate Containing a Mode I Crack Along Principle Axis—C. D. Liu, pp. 21–38

Vol. 76, No. 2, 1996

Vol. 76, No. 3, 1996
Collinear Periodic Cracks in an Anisotropic Medium—H. Yiantai and Z. Xinghua, pp. 207–220
| Volume 76, No. 3, 1996 |

| Volume 77, No. 1, 1996 |
| Time-Dependent Boundary Element Analysis for an Interface Crack in a Two-Dimensional Unidirectional Viscoelastic Model Composite—S. S. Lee, pp. 15–28 |
| An Analysis of Mode I Interlaminar Deformation Ahead of Crack Front in Composite DCB Specimens—K. Arakawa and K. Takahashi, pp. 41–50 |

| Volume 77, No. 2, 1996 |
| Edge Delamination in a Laminated Composite Strip Under Generalized Plane Deformations—I. Jeon, B. W. Cha, and S. Im, pp. 95–110 |
| Modeling and Simulation of Crack Propagation in Mixed-Modes Interlaminar Fracture Specimens—O. Allix and A. Corigliano, pp. 111–140 |

| Volume 77, No. 4, 1996 |
| Separation of Crack Extension Modes in Orthotropic Delamination Models—J. L. Beuth, pp. 305–321 |

| Volume 77, No. 2, 1996 |

| Volume 78, No. 1, 1996 |
| One the J-Integral in Periodically Layered Composites—C. T. Sun and X. X. Wu, pp. 89–100 |

International Journal of Solids and Structures

| Volume 33, Nos. 20–22, Aug. 1996 |
| Stochastic Structural Interface Defects in Fiber Composites—M. Kaminiski and M. Kleiber, pp. 3035–3056 |

| Volume 33, No. 24, July 1996 |
| Mode III Crack in a Laminated Medium—M. Ryvkin, pp. 3611–3626 |

| Volume 33, No. 25, Aug. 1996 |
| On Asymptotically Correct Linear Laminated Plate Theory—V. G. Sutyrin and D. H. Hodges, pp. 3649–3672 |

| Volume 33, No. 26, Aug. 1996 |

Journal of Adhesion

| Volume 50, No. 1, 1995 |

| Volume 50, No. 4, 1995 |

| Volume 52, Nos. 1–4, 1995 |
Interfacial Shear-Strength of Oxide-Films on Carbon-Fibers Formed by the Sol-Gel Process—T. W. Jung and R. V. Subramanian, pp. 65–79

On the Effects of Processing Conditions and Interphase Modification on the Fiber/Matrix Load-Transfer in Single-Fiber Polypropylene Composites—F. H. Hoecker and J. Kargerkocssis, pp. 81–100

Influence of the Film Former on Fiber-Matrix Adhesion and Mechanical-Properties of Glass-Fiber-Reinforced Thermoplastics—B. J. R. Scholten and J. C. Brackman, pp. 115–129

Residual-Stresses in Microcomposites and Macrocomposites—H. D. Wagner, pp. 131–148

The Effect of Adherends on the Curing of an Epoxy Adhesive—F. D. J. Chu and R. E. Robertson, pp. 149–166

Comparison Between FT-IR and XPS Characterization of Carbon-Fiber Surfaces—T. Ohwaki and H. Ishida, pp. 167–186

Influence of Matrix Properties on Fragmentation Test—J. P. Armistead and A. W. Snow, pp. 209–222

Vol. 53, Nos. 1–2, 1995

An NMR Imaging Study of the Interface of Epoxy Resin-Glass Fiber-Reinforced Composites—C. D. Arvanitopoulos and J. L. Koenig, p. 15

Transilient Thermal Deformations of the Interphase in Polymer Composites—N. R. Sottos and M. Swindeman, pp. 69–78

The Fiber/Matrix Bond Strength of CFRP Deducded from the Strength Transverse to the Fibers—P. W. M. Peters, pp. 79–101

Vol. 53, Nos. 3–4, 1995

Journal of Advanced Materials

Vol. 27, No. 4, 1996

Applications of Net-Shape Molded Carbon-Carbon Composites in IC Engines—W. Kowbel, V. Chellappa, J. C. Withers, and P. O. Ransone, pp. 2–7

Selective Reinforcement of Photoresists with Continuous Fibers Using 3-D Composite Photolithography—T. Renault, A. A. Ogale, R. Charan, and A. Bagchi, pp. 8–12

Dynamics of Chemical Vapor Infiltration in Carbon Fiber Bundles—R. P. Currier, D. J. Devlin, and J. Morzinski, pp. 13–24

Chemical Modification and Crystalline Polymer Particle Filled Epoxy Resins—H.-H. Wang, and J.-C. Chen, pp. 25–31

Effect of TiB2 Particle and SiC Whisker Additions on the Friction and Wear Behavior of Alumina—D. Jianxin and A. Xing, pp. 32–36

IM7/LaRC™-IAX Polyimide Composites—T. H. Hou, N. J. Johnston, E. S. Weiser, and J. M. Marchello, pp. 37–46

A New Thermoplastic Polyimide Composite Based on 1,4-(3,4-Dicarboxyphenoxyl) Benzene/4,4’-Methylene Dianiline—J. Zhou, J. Zhang, M. Ding, and T. He, pp. 58–62

Journal of Applied Mechanics

Vol. 63, No. 2, June 1996

Singularity of the Tip of a Crack Terminating Normally at an Interface Between Two Orthotropic Media—J. C. Sung and J. Y. Liou, pp. 264–270

Transient Elastic Waves in a Transversely Isotropic Plate—R. L. Weaver, W. Sachse, and K. Y. Kim, pp. 337–346

On the Growth-of-Waviness in Fiber-Reinforced Polymer Composites: Viscoelastic Bifurcation and Imperfection Sensitivity—M. S. Bhalerao and T. J. Moon, pp. 460–466

Three-Dimensional Elasticity Solution for the Buckling of Transversely Isotropic Rods: The Euler Load Revisited, by G. A. Kardomateas—Discussions by K. T. Chau and C. W. Bert, pp. 558–559

Vol. 63, No. 3, Sept. 1996

Anisotropic Beam Theories with Shear Deformation—H. Murakami, E. Reissner, and J. Yamakawa, pp. 660–668

Journal of Engineering Materials and Technology

Vol. 118, No. 3, July 1996

Interactive Growth of Multiple Fiber-Bridged Matrix Cracks in Unidirectional Composites—Y. Huang, N.-Y. Li, H. W. Zhang, and K.-C. Hwang, pp. 295–301

The Influence of Thermoplastic Film Interleaving on the Interlaminar Shear Strength and Mode I Fracture of Laminated Composites—L. Li, P.-Lee-Sullivan, and K. M. Liew, pp. 302–309

Strain Measurement in the Wavy-Ply Region of an Externally Pressurized Cross-Ply Composite Ring—H. E. Gascoigne and M. G. Abdallah, pp. 325–329
Curing Forces in Orthogonal Cutting of Unidirectional GFRP Composites—G. Caprino and L. Nele, pp. 419–425

Vol. 118, No. 4, Oct. 1996
Effect of Architecture on the Strength of Braided Tubes Under Biaxial Tension and Compression—L. V. Smith and S. R. Swanson, pp. 478–484

Journal of Composite Materials
Vol. 30, No. 1, 1996
Improved Mechanical Properties in Hydrodynamically Aligned, Short-Fiber Composite Materials, D. C. Guell and A. L. Graham, pp. 2–12
Calculation of Stresses in Crosslinking Polymers—D. Adolf and J. E. Martin, pp. 13–34
Effect of Interfacial Strength on Erosion Behavior of FRPs—N. Miyazaki and T. Hamao, pp. 35–50

Vol. 30, No. 2, 1996
Effective Crack Growth Model for Residual Strength Evaluation of Composite Laminates with Circular Holes—A. Afaghi-Khatibi, L. Ye, and Y.-W. Mai, pp. 142–163
Effect of Fatigue Damage in Woven Composites on Thermomechanical Properties and Residual Compressive Strength—M. Mitrovic and G. P. Carman, pp. 164–188
Enhanced Cell Model with Nonlinear Elasticity—J. B. Aidun and F. L. Addessio, pp. 248–280

Vol. 30, No. 4, 1996
Effective Crack Growth and Residual Strength of Composite Laminates with a Sharp Notch—A. Afaghi-Khatibi, L. Y., and Y.-W. Mai, pp. 333–357
Failure Analysis of Bolted Composite Joints Exhibiting In-Plane Failure Modes—K. Hollmann, pp. 358–383
Thermo-Mechanical Regulation of Residual Stresses in Polymers and Polymer Composites—V. Kominar, pp. 406–415
Multiple Delaminations and Their Severity in Circular Axisymmetric Plates Subjected to Transverse Loading—H. Suemasu and O. Majima, pp. 441–453
Analysis of Geometric Imperfections Affecting the Fibers in Unidirectional Composites—B. Paluch, pp. 454–485

Vol. 30, No. 6, 1996
Can the Compressive Response of Fiber-Reinforced Composites be Modelled by Means of Layered Arrays?—Y. Weitsman and I. Chung, pp. 662–671
Stress Singularity Due to Kink Band Weakening a Unidirectional Composite Under Compression—R. A. Chaudhuri, M. Xie, and H. J. Garala, pp. 672–691
Quantification of Random Fiber Arrangements Using a Radial Distribution Function Approach—R. K. Everett, pp. 748–758

Vol. 30, No. 7, 1996
Fracture Behavior of Unidirectional Commingled-Yarn-Based Carbon Fiber/Polyamide 6 Composite Under Three-Point Bending—N. S. Choi, H. Yamaguchi, and K. Takahashi, pp. 760–784
Interlaminar Shear Fatigue Damage Evolution of 2-D Carbon-Carbon Composites—J. C. Williams, S. W. Yurgartis, and J. C. Moosbruger, pp. 785–799
Study on the Characteristic Curve of Stiffness Degradation Caused by Transverse Matrix Cracking in Multidirectional Composite Laminates—L.-Y. Xu, pp. 820–838

Vol. 30, No. 8, 1996
Influence of Fiber-Bond Strength on the Performance of Nicalon/CAS-II Composite, R. Kharaman and J. F. Mandell, pp. 864–884
Longitudinal and Transverse Moduli and Strengths of Low Angle 3-D Braided Composites—S. R. Kalidini and A. Abusafieh, pp. 885–905
Three-Dimensional Effective Moduli of Symmetric Laminates—H.-J. Chen, S. W. Tsai, pp. 906–917
Dynamic and Static torsional Characterization of Pultruded Hybrid Cylindrical Composite Rods—S. S. Kumar and M. P. Raju, pp. 918–932
Influence of Void Shape, Void Volume and Matrix Anisotropy on Effective Thermal Conductivity of a Three-Phase Composite—A. Krach and S. G. Advani, pp. 933–946

Vol. 30, No. 9, 1996
On a Technique for Generating Stress-Strain Curves from Flexural Data—Y. Zhang and D. L. Sikarskie, pp. 951–963
Three-Dimensional Failure Analysis of Plain Weave Textile Composites Using a Global/Local Finite Element Method—K. Woo and J. D. Whitcomb, pp. 986–1003
Object-Oriented Approach to Optimize Composite Laminated Plate Stiffness with Discrete Ply Angles—A. Todoroki, N. Sasada, and M. Miki, pp. 1020–1041
Orthotropic Creek and Complex Moduli of a Viscoelastic Composite Reinforced with Aligned Elliptic Fibers—J. Li and G. J. Weng, pp. 1044–1066

Vol. 30, No. 10, 1996
A Methodology to Derive the Implicity Equation of Failure Criteria for Fibrous Composite Laminates—J. Echaabi and F. Trochu, pp. 1088–1114
Modeling Lamina Longitudinal Compression Strength of Carbon-Fiber Composite Laminates—A. B. Demorais, pp. 1115–1131
Shear Correction Factors for Thin-Walled Composite Boxbeam Considering Nonclassical Han and L. J. Lee, pp. 1475–1493

Vol. 30, No. 14, 1996
A Comprehensive Model to Predict the Stress-Fields in a Single-Fiber Composite—D. Tripathi, F. P. Chen, and F. R. Jones, pp. 1514–1538
An Overall View of Laminate Thoerories Based on Displacement Hypothesis—D. S. Liu and X. Y. Li, pp. 1539–1561
The Mechanical-Properties and Deformation of Shear-Induced Polymer Liquid-Crystalline Fibers in an Engineering Thermoplastic—F. F. Shi, pp. 1613–1626

Vol. 30, No. 15, 1996
A Thermoviscoplastic Theory for Composite-Materials by Using a Matrix-Partitioned Unmixing-Mixing Scheme—S. J. Kim and E. S. Shin, pp. 1647–1669
Solid Particle Erosion Behavior of Metal-Matrix Composites—N. Miyazaki and S. Funakura, pp. 1670–1682
Modeling of Translaminar Cracks in Cross-Ply Composite Laminates—E. Adolfsson, pp. 1683–1709
Elastic-Constants of Thick Orthotropic Composite Plates (Vol. 29, Pg. 1025, 1995)—E. O. Ayorinde, p. 1729

Vol. 30, No. 16, 1996

Experimental-Study of the Contribution of Interfacial Friction to the Deformation Resistance of Particle-Reinforced Polymers—V. V. Mosheev and V. N. Krovov, pp. 423–426
Description of the Mechanical Relaxation of Highly Oriented Polymers Based on their Relaxation Spectra—S. V. Bronnikov and V. I. Vettegren, pp. 427–431

Vol. 31, No. 12, June 1996

Influence of Interfacial Microcracks on the Elastic Properties of Composites—M. J. Pan, D. J. Green, J. R. Hellmann, pp. 3179–3184

Toughened Ceramic Composites—L. An, H. M. Chan, and K. K. Soni, pp. 3223–3229

Characteristics of a Continuous Si-Ti-C-O Fiber with Low-Oxygen Content Using an Organometallic Polymer Precursor, M. Shibuya and T. Yamamura, pp. 3231–3235

Vol. 31, No. 13, July 1996

The Role of Grain Boundary Sliding and Reinforcement Morphology on the Creep Deformation Behaviour of Discontinuously Reinforced Composites—S. B. Biner, pp. 3459–3468

Crack Initiation in Laminated Metal Intermetallic Composites—J. Rawers and K. Perry, pp. 3501–3506

Vol. 31, No. 14, July 1996

Inviscid Melt-Spun High-Temperature Alumina-Magnesia Fibres—Y.-M. Sung and S. A. Dunn, pp. 3657–3660

Stress Disturbances Arising from Cut Fibre and Matrix in Unidirectional Metal Matrix Composites Calculated by Means of a Modified Shear Lag Analysis—S. Ochiai and M. Hojo, pp. 3861–3870

Characterization of Absorbed Water in Aramid Fibre by Nuclear Magnetic Resonance—C. Connor and M. M. Chadwick, pp. 3871–3878

Vol. 31, No. 15, Aug. 1996

The Interfacial Properties of Aramid/Epoxy Model Composites—M. C. Andrews, D. J. Bannister, and R. J. Young, pp. 3893–3914

Yielding and Impact Behaviour of pp/gf/ep/ternary Composites with Controlled Morphology—J. Jancar, pp. 3983–3988

Microstructure and Composition of Al3Li2O4 Composites Made by Reactive Metal Penetration—Y. Gao, J. Jia, R. E. Loehmann, K. G. Eswuk, and W. G. Fahrenholz, pp. 4025–4032

Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibres—P. Xie, P. Gu, and J. J. Beaudoin, pp. 4093–4098

Vol. 31, No. 16, Aug. 1996

A TEM Study of the Interfaces and Matrices of SiC-Coated Carbon Fibre/Aluminium Composites Made by the K2ZrF6 Process—X. Chen, G. Zhen, and Z. Shen, pp. 4297–4302

In Situ Laster Surface Coating of TiC Metal Matrix Composite Layer—M. Yan and H. Hanqi, pp. 4303–4306

Chemical Vapour Deposition of Silicon Carbide on Hollow and C-Shaped Carbon Fibres—G. Emig, N. Popovska, Y. S. Lee, and B. S. Rhee, pp. 4395–4400

Micromechanics Analysis of Particulate-Reinforced Composites and Their Failure Mechanisms—Z. Dong and Y. Wu, pp. 4401–4406

Vol. 31, No. 17, Sept. 1996

Tensile and Compressive Moduli of Fibres Using a Two-Component Beam System—M. G. Dobb and M. Ghane, pp. 4445–4450
The Failure of Fibre Composites and Adhesively Bonded Fibre Composites Under High Rates of Test, Part II Mode I Loading—Dynamic Effects—B. R. K. Blackman, A. J. Kinloch, Y. Wang, and J. G. Williams, pp. 4451–4466

Joining of Carbon Fibre-Reinforced Silicon Nitride Composites with 72Ag 26Cu 2Ti Filler Metal—M. Nakamura and I. Shigematsu, pp. 4629–4634

The Toughening Behaviours of Cr₃C₂ Particulate-Reinforced Al₂O₃ Composites—C.-T. Fu and A.-K. Li, pp. 4697–4704

Vol. 31, No. 18, Sept. 1996

Phase Transformation of Calcia Alumina Magnesia Fibres Produced by Inviscid Melt Spinning—Y.-M. Sung and S. A. Dunn, pp. 4741–4744

Fractographic Analysis of Vitreous Calcia Alumina Eutectic Fibres Produced by Inviscid Melt Spinning (IMS)—Y.-M. Sung and I.-Mo. Sung, pp. 4775–4778

Dielectric Characteristics of Composite Ceramics in the Ba₂(Mg₁₃Ta₂₃)O₆·94O₃ System—X. M. Chen, pp. 4853–4858

Vol. 31, No. 19, Oct. 1996

Alumina Mullite Zirconia Composites Part I Colloidal Processing and Phase-Formation Characteristics—H. M. Jang, S. M. cho, and K. T. Kim, pp. 5083–5092

Investigation on the Pressure Infiltration of Sol Gel Processed Textile Ceramic Matrix Composites—H.-K. Liu, pp. 5093–5100

Metal Distribution in Alumina/Alumina Composites Synthesized by Directed Metal Oxidation—H. Venugopalan and T. Debroy, pp. 5101–5108

The Effect of Formulated Molecular Weight on Temperature Resistance and Mechanical Properties in Polyimide Based Composites—J. Zhou, J. Zhang, W. Liu, M. Ding, and T. He, pp. 5119–5126

Fibre Strength Selection and the Mechanical Resistance of Fibre-Reinforced Metal Matrix Composites—L. Pambaguan and R. Mevel, pp. 5215–5220

Interfacial Mobility and Its Effects on Interlaminate Fracture Toughness in Glass-Fibre-Reinforced Epoxy Laminates—T. H. Wang and F. D. Blum, pp. 5231–5238

Compressive and Tribological Properties of Al₂O₃ Fibre and hexagonal BN Particle Hybrid Reinforced Al Si Alloys, pp. 5239–5246

Rheological Properties of Al₂O₃ SiC Whisker Composite Suspensions—L. Bergstrom, pp. 5257–5270

The Effect of Al₂O₃ Particulates on the Precipitation Behaviour of 6061 Aluminum-Matrix Composites—T. Das, P. R. Munroe, and S. Bandopadhyay, pp. 5351–5362

Effect of Thermal Treatment on the Reactivity of SiC-Based Fibres—C. Vix-Guterl and P. Ehrburger, pp. 5363–5372

Fracture Behaviour at Elevated Temperatures of Alumina Matrix Composites Reinforced with Silicon Carbide Whiskers—K. Xia and T. G. Langdon, pp. 5487–5492

Vol. 31, No. 21, Nov. 1996

The Wear and Friction of Short Glass-Fibre-Reinforced Polymer Composites in Un lubricated Rolling Sliding Contact—Y. K. Chen, S. N. Kukureka, and C. J. Hooke, pp. 5643–5650

Nickel-and Copper-Coated Carbon Fibre Reinforced Tin Lead Alloy Composites—C. T. Ho, pp. 5781–5786

Journal of Reinforced Plastics and Composites

Vol. 15, June 1996

Stress Failure Criterion for Laminated Composites—H.-Y. Yea and E D. Blum, pp. 551–560

Stress Field in Coated Continuous Fiber-Reinforced Polymeric Composite Due to Hygrothermal Loading—P. C. Upadhyay, K. Guru Murthy, and D. W. Lyons, pp. 619–651

Vol. 15, July 1996

Monitoring the Hydrolytic Degradation of Polyester-Based Composites by a Piezoelectric Method—N. Saint-Pierre, I. Perrissin-Fabert, Y. Jayet, and J. Tatibouet, pp. 663–672

Environmental and Mechanical Fatigue of Wind Turbine Blades Made of Composites Materials—C. Caprile, G. Sala, and A. Buzzi, pp. 673–691

Effects of Pull Speed on Die Wall Temperatures for Flat Composites of Various Sizes—Y. R. Chachad, J. A. Roux, J. G. Vaughan, and E. S. Arafat, pp. 718–739

Theoretical and Experimental Investigation of Failure and Damage Progression of Graphite-Epoxy Composites in Flexural Bending Test—J. Echaibi, E. Trochu, X. T. Pham, and M. Ouellet, pp. 740–757

Vol. 15, Aug. 1996

Optimized Design of Pultruded Composite Beams—S. C. Mantell and B. Hoiness, pp. 758–778

On Residual Stress Induced Distortions During Fabrication of Composite Shells—L. K. Jain and Y.-W. Mai, pp. 793–805

Application of Piezoelectric Paints to Damage Detection in Structural Materials—S. Egusa and N. Iwasawa, pp. 806–817

On the Stress Concentration in the Matrix Around the Fibers in Notched Composite Laminates—R. Barboni, R. Cardonaro, and C. Scarponi, pp. 894–921

Micromechanical Analysis of Hybrid Composites—G. R. Ross and O. O. Ochoa, pp. 828–836

Notes on the Modeling of Preform Compaction: II-Effect of Sizing on Bundle Level Micromechanics—V. M. Karbhari and P. Simacek, pp. 837–863

Vol. 15, Sept. 1996

The Influence of Interlaminar Stresses on Fatigue Behaviour of Notched Composite Laminates—R. Barboni, R. Cardonaro, and C. Scarponi, pp. 894–921

Vol. 15, Oct. 1996

Evaluation of Thermal Stresses at the Interface of a Stitch in a Stitched Laminate—H. Hyung Lee and M. W. Hyer pp. 972–987

Vol. 15, No. 1, 1996

Experimental Study and Simple Failure Analysis of Stitched J-Stiffened Composite Shear Panels—H.-Y. Yeh and V. L. Chen, pp. 1070–1087

Dynamic Response of Composite Cylinders Subjected to a Moving Internal Pressure—J. T. Tzeng and D. A. Hopkins, pp. 1088–1105

Water Intrusion in Graphite/Epoxy Sandwich Panels Subjected to Low Level Impact Damage—H.-Y. Yeh and E. B. Nelson, pp. 1106–1116

On the Distributions of Particulates in Cast Metal Matrix Composites—K. Xiao and J. S. Lyons, pp. 1131–1148

The Influence of Water Immersion on Skin-Core Debonding in GFRP-Balsa Sandwich Structures—W. J. Cantwell, G. Brosier, and P. Davies, p. 1161

Journal of Sound and Vibration

Vol. 192, No. 5, May 1996

Vol. 193, No. 3, June 1996

On the Relative Effects of Transverse Shear Deformation and Rotatory Inertia on the Free Vibration of Symmetric Cross-Ply Laminated Plates—C. W. Bert and M. Malik, pp. 927–933

Ultrasonic Plane SH Wave Reflection from a Uni-Directional Fibrous Composite Slab—S. K. Bose, pp. 1069–1078

Exact Dynamic Stiffness Matrix for Composite Timoshenko Beams with Applications—J. R. Banerjee and F. W. Williams, pp. 573–586

An Inverse Method to Measure the Axial Modulus of Composite Materials Under Tension—A. J. Hull, pp. 545–552

Modal Density of Composite Honeycomb Sandwich Panels—K. Renji, P. S. Nair, and S. Narayanan, pp. 687–700

Response of Aerospace Sandwich Panels to launch Acoustic Environment—A. Paolozzi and I. Peroni, pp. 1–18

An Exact Elastodynamic Solution to Vibration Problems of a Composite Structure in the Plane Stress State—S. Karczmarzyk, pp. 85–96

The Parametric Instability of Partially Covered Sandwich Beams—K. Ray and R. C. Kar, pp. 137–152

The Effect of Delamination on the Natural Frequencies of a Laminated Composite Beam—R. M. Gadelrab, pp. 283–292

Short Term Isothermal Aging of Epoxy Resin and Epoxy-Carbon Fiber Composites—A. F. Chifu and J. O. Iroh, pp. 408–413

The Modulus of Shear-Induced Fibers from a Thermotropic Liquid Crystalline Polymer in a Thermoplastic Matrix—X. S. Yi, F. Shi, and W. Michaelis, pp. 423–429

Crack Growth and Fracture Behavior of Fabric Reinforced Polymer Composites—V. Chelappa and B. Z. Jiang, pp. 443–450

The Use of Friction in the Shaping of a Flat Sheet into a Hemisphere—T. J. Chu, K. Jiang, and R. E. Robertson, pp. 458–467
Effects of Thermal History on Mechanical Behavior of PEEK and its Short-Fiber Composites—J. R. Sarasua, P. M. Remiro, and J. Pouyet, pp. 468–477
Tear Resistance of Sparsely Reinforced Elastomer Sheets—R. Pan and D. Watt, pp. 486–491
PMR-15/Carbon Fiber Composites Produced from Powder-Coated Towpreg—J. A. Dugger and D. E. Hirt, pp. 492–496
Braided Thermoplastic Composites from Powder-Coated Towpregs. Part II: Braiding Characteristics of Towpregs—A. Ramasamy, Y. Wang, and J. Muzzy, pp. 505–514
Mechanical and Physical Properties of Isothermally Aged Carbon Fiber-Epoxy Composites—A. F. Chifu and J. O. Iroh, p. 532

Vol. 17, No. 5, Oct. 1996
Estimation of Diffusion and Solubility Coefficients for Water and CO2 in Reaction Injection Molded Parts—D. F. Mielewski, N. R. Anturkar, and D. R. Bauer, pp. 649–655
Reactions of Unconverted Isocyanate in Molded RIM Parts and Their Implications to Outgassing—D. F. Mielewski, N. R. Anturkar, and D. R. Bauer, pp. 656–665
Photodegradation and Talc-Filled Polypropylene—M. S. Rabello and J. R. White, pp. 691–704
Development and Characterization of High-Performance Polybenzoxazine Composites—S. B. Shen and H. Ishida, pp. 710–719
Viscoelasticity of Polymers Filled by Rigid or Soft Particles: Theory and Experiment—N. D. Alberola and P. Mele, p. 751

Polymers & Polymer Composites

Vol. 4, No. 3, 1996
NDT of Composite Materials—Problems and Solutions. 1. NDT as a Source of Information—I. Matiss, pp. 181–188
NDT of Composite Materials—Problems and Solutions. 2. Relaxation Spectrometry for the Structural Study of Polymers and Polymer Composites—I. Matiss, pp. 189–194

Vol. 4, No. 4, 1996
Molecular Transport of Organic Esters into Copolymeric and Terpolymeric Membranes—T. M. Aminabhavi and S. F. Harlapur, pp. 225–234

SAMPE Journal

Vol. 32, No. 4, July/Aug. 1996
21st Century Market Opportunities for Advanced Fibers and Composites—C. L. Segal, pp. 12–21

Design with Composite Materials: From Complete Chaos to Clear Concepts (Part I)—B. Rutan, Dr. C. Heil, and B. Goldsworthy, pp. 18–26
Recycling Process for Scarp Composites and Prepregs—R. E. Allred, pp. 46–51
Advanced Composites Recycling—J. F. Unser, T. Staley, and Dr. D. Larsen, pp. 52–57

Design with Composite Materials: From Complete Chaos to Clear Concepts (Part II)—B. Rutan, Dr. C. Hiel, and B. Goldsworthy, pp. 11–17

EMI Shielding with Lightweight Metal Fiber Composites—J. Wang, V. V. Varadan, and V. K. Varadan, pp. 18–22

3D-Knitted Fabrics for Sandwich Panels—D. Phillips, I. Verpoest, and J. Van Raemdonck, pp. 23–36

World of Composites

EDITOR'S NOTE:

This issue of the World of Composites will feature a review of activities in ASTM's Committee D-30 on Composite Materials. This will be followed by a brief summary of MIL-HDBK-17 activities. The announcement of a recent composite materials publication will complete this issue.

AMERICAN SOCIETY FOR TESTING AND MATERIALS

D-30's Fall '96 Meeting Reviewed

Committee D-30 on Composite Materials held its annual Fall Meeting in Nov. 1996 in New Orleans, Louisiana. The meeting featured a symposium plus a full schedule of subcommittee meetings. Summaries of all the committee activities follow.

Symposium on High Temperature and Environmental Effects on Polymeric Composites

Committee D-30 held a Symposium on Composite Materials in Non-Aerospace Applications on 19 Nov. 1996. Dr. Rod Martin of Materials Engineering Research Laboratory Ltd. and Prof. Abdul-Hamid Zureick of Georgia Tech served as the symposium co-chairmen. The symposium, which featured 12 papers, reviewed emerging uses of composite materials in infrastructure and marine applications. A special technical publication (STP) based on the symposium proceedings is anticipated.

Summaries of Subcommittee Activities

Subcommittee D30.01—Editorial

Chaired by Crystal Newton, Materials Science Corporation

The scope of Subcommittee D30.01 on Editorial and Reference Standards has been revised to include editorial review, terminology, and data recording. The subcommittee is balloting approximately 25 terms in the areas of fibers, damage, and specimen preparation. On-going activities include coordination of terminology with MIL-HDBK-17 and an overall review of terminology in all D-30 standards. Three documents will be ballots, revisions to the guides for the identification of composite materials and of fibers, fillers, and core materials. A new guide for material orientation codes will be drafted with plans for the inclusion of lay-up codes and braiding codes.

Subcommittee D30.02—Research and Mechanics

Chaired by Rod Martin, Materials Engineering Research Laboratory

The subcommittee's task groups addressed a variety of issues. Highlights are as follows.

The D30.02.01 Task Group on Energy Absorption, chaired by Karen Jackson of the U.S. Army, met to discuss the flat-plate crush test fixture that is being considered for a standard test method. The task group planned to prepare a preliminary test method document. It will be discussed in more detail following a workshop that is planned for the Spring ASTM meeting to be held in St. Louis, MO, in 1997. A strategic plan for the task group will also be prepared for the next meeting.

The D30.02.02 Task Group on Composites in Civil Engineering Applications met immediately after the Symposium and was Chaired by Abdul Zureick of Georgia Institute of Technology. Prof. Zureick stated that the uses of polymer composites in civil engineering applications would be in stand-alone structural shapes and as an external or internal reinforcement. The objective of the Task Group is to develop a Standard Guide for Testing Civil Engineering Polymer Composites. This guide would reference many existing D-30 standards and give recommendations on certain parameters that should be used with these grades of composites. It was the consensus from the meeting that this approach was more realistic than adding clauses in individual standards to allow them to be used. The guide would take the same approach as the Guide for Automotive Composites. A draft standard will be prepared for comment at the next meeting.

The main activity within D30.02.03 Task Group on International Standards Harmonization remains the progress of the tension testing round robin. This is reported in the D30.04 minutes. The continued existence of the Task Group was considered necessary to act as a focal point within D-30 for harmonization activities such as on the ASTM web site. Gene Camponeschi is the current
D-30 liaison to ISO and it was decided that he would be a more appropriate focal point for this Task Group.

A NASA Contractor Report (CR 4751, Sept. 1996) entitled Standard Test Methods for Textile Composites was distributed at the D30.02.04 Task Group meeting on Textile Composites, chaired by John Masters, Lockheed Martin Engineering and Sciences Company. This report will form the backbone of the ASTM guide on test parameters for textile composites. A draft will be written for the next meeting.

The Task Group on D30.02.05 on Round Robin Planning, Chaired by Ron Zabora of Boeing is currently evaluating the tension round robin for D30.04, a bearing round robin for D30.05, and interlaminar fracture round robins for D30.06. Their objective is to ensure that the tests are run correctly to achieve the aims of the round robins. The task group chairman expressed the importance of understanding the aim and objectives of the round robin, that is, is it for research purposes or generation of design allowables. He also emphasized the importance of beginning with a uniform set of test specimens.

Finally, the program for forthcoming symposia was discussed. The program is in flux because of the proposed joint meetings with MIL-HDBK-17.

Subcommittee D30.03—Constituent Properties

Chaired by James Ferrel, Hexcell Inc.

The subcommittee completed several key activities regarding its existing standards. The Chair reported that D 3544 (Guide for Reporting Test Methods and Results on High Modulus Fibers) passed main committee ballot. Several comments made by voters were addressed and the method was sent to society ballot. The chair also indicated that four other methods had completed subcommittee ballot. Method C 613 (Test Method for Resin Content of Carbon and Graphite Prepregs by Solvent Extraction) passed subcommittee ballot and will be sent to main committee ballot. However, negative votes were found persuasive on D 3171 (Test Method for Fiber Content of Resin-Matrix Composites by Matrix Digestion), D 3529 (Test Method for Resin Solids Content of Epoxy-Matrix Prepreg by Matrix Dissolution), and D 3530 (Test Method for Volatile Content of Epoxy Matrix Prepreg). They will be reballed at the subcommittee level pending modifications.

The subcommittee also discussed possible revisions to D 3800 (Test Method for Density of High Modulus Fibers). Minor changes were discussed for this method. It will be sent to subcommittee ballot in the Spring of 1997.

Finally, the subcommittee recommended that ownership of D 3379 (Test Method for Tensile Strength and Young's Modulus for High-Modulus Single-Filament Materials) be offered to Committee C-28's Subcommittee C28.07 on Ceramic Matrix Composites. A poll on the D30.03 membership indicated that none of the members used the standard in their work. (This recommendation was approved in the D-30 main committee meeting.)

Subcommittee D30.04—Lamina/Laminate Properties

Chaired by Richard E. Fields, Lockheed-Martin

Rich Fields announced his resignation as chair of D 30.04, after eight years of service. He expects to continue to be active in the committee. A successor has not yet been named; Rich will continue to act as chair in the interim while a search is being conducted.

A variety of standard test method actions were taken in the subcommittee's section meetings. A brief synopsis of key items is as follows. The actions are grouped by test type.

Tension—Testing and initial data reduction for the ASTM portion of the ASTM D 3039/ISO 527-5 tensile test round-robin has been completed. ASTM is awaiting test data from ISO and is, in the interim, evaluating test method performance based on the U.S. data and tracking down remaining anomalies in the data. A data review task group has been assigned, and final results should be available for the Spring D-30 meeting.

Compression—The first subcommittee draft of the revision to the sandwich beam test method, D 5467, was conducted. Several technical comments were received and deemed persuasive. They affect data reduction, and will be worked off-line before a second subcommittee draft.

Shear—Diane Hoyns will take over as technical lead for revision to the D 4255 rail shear test method. Peter Grant will become chair of the D30.04.03 shear section, replacing Sotiris Kellas, who can no longer participate.

Specimen preparation—Impressions of the existing specimen preparation guide from a new user were discussed, as well as the content for a new revision of the guide. Other plans were also discussed, including the proposed test methods for cured ply thickness of laminates and glass transition temperature, and a revision to the moisture absorption test method.

Flexure—The ISO draft flexure test method document will be reviewed by a D30.04 task group coordinated by Gene Camoneschi.

Subcommittee D30.05—Structural Properties

Chaired by Ron Zabora, Boeing Commercial Airplanes Company

The subcommittee discussed a variety of test method activities at its last meeting. Summaries of the key points are as follows.

Bearing Tests—The subcommittee held preliminary discussions with regard to future round robin testing in support of its bolt bearing test method development effort.

Plate Flexure—The chairman reported that development of a sandwich plate flexure test standard is progressing well. Investigators are resolving differences in plate shear and beam flexure methods of computing modulus. He also reported that the effort has gained a sponsor from automotive industry to supplement its marine industrial sponsorship.

Open Hole Compression and Compression After Impact Tests—Volunteers have been found to prepare drawings of fixtures for the open hole compression and the compression after impact test fixtures. The standards will be revised and reballed once the drawings have been received.

Subcommittee D30.06—Interlaminar Properties

Chaired by Rod Martin, Materials Engineering Research Laboratory for T. Kevin O'Brien, U. S. Army Research Lab

The subcommittee addressed a variety of standard test method issues in its meetings. A brief synopsis of key items is as follows.
Double Cantilever Beam Fatigue Standard—Rod Martin led a discussion regarding the latest ballot for the DCB fatigue standard. Technical changes were discussed to resolve three negative votes regarding the description of the delamination geometry, the loading frequency, and the compliance calibration.

Mode II Testing—James Reeder reviewed the status of the Mode II Round Robin test program being organized by VAMAS. Two action items were identified. The round robin’s objectives will be documented and disseminated to the committee. This documentation will then be reviewed to identify potential technical variables between labs and between specimens.

Mixed Mode II/Mode II Testing—Current standardization activities for Mixed Mode I/Mode II Bending (MMB) test methods were also reviewed. The scatter in the MMB test data was reviewed and observed to increase as the Mode II component increased. It was suggested that more replicate tests may be required to address the scatter. James Reeder will review the data to determine if a research round robin is required or if the committee can move forward with its standard development efforts using the data currently available.

Mode III Testing—The status of the Mode III Edge Crack Torsion test method development effort was also reviewed. The subcommittee is preparing to conduct investigative round robin testing.

Short Beam Shear Test—Peter Grant reported that he is more than half way through a new draft of the short beam shear standard. This new draft will include a change in the title to more accurately reflect the data generated by this test.

Interlaminar Tension—Wade Jackson reported on the task group’s activities and reviewed the curved beam test. Three laboratories have expressed an interest in supporting an investigative round robin. The task group is evaluating both four-point bend and flanged-bend tests.

Subcommittee D30.07—Metal Matrix Composites
Chaired by W. Steven Johnson, Georgia Institute of Technology

The Subcommittee is working closely with VAMAS to develop round robin test data that can be used to write standards. Two round robins are planned. The first is based upon continuous alumina fibers in an aluminum matrix supplied by 3-M. This material is currently being inspected at the University of Dayton Research Institute. It will then be cut into specimens at the National Physical Laboratory (NPL) in England. The test matrix will be composed of both room and elevated temperature tensile and fatigue tests. The effects of specimen geometry and heating sources on material response will be investigated in these tests. The second round robin is based upon titanium matrix composites purchased from Textron. These unidirectional composites will be inspected by NPL then machined by the Japanese at the NRIM. This round robin will also feature room and elevated temperature tensile and fatigue tests. However, the elevated temperature tests will be conducted at higher temperatures. The two studies will provide data for an elevated temperature fatigue test standard for metal matrix composites.

Committee D-30 will next meet on 5–8 May 1997 in St. Louis, MO. The Seventh Symposium on Composite Materials: Fatigue and Fracture will be held then. A full schedule of committee meetings will also be held. Please contact Katharine Morgan for further information. Her address at ASTM Headquarters is 100 Barr Harbor Drive, West Conshohocken PA 19428-2959 USA. Her telephone number is (610) 832-9721. She may also be reached at kmorgan@local.astm.org.

MIL-HDBK-17
Fall ’96 Meeting Reviewed

The MIL-HDBK-17 Coordination Groups met in September in Chicago, IL. Seven new committees/task groups were started in the Polymer Matrix Composites Coordination Group, four in the Composites for Spacecraft working group and three in the Guidelines working group with topics of damage tolerance, sandwich construction, and the building block approach for a range of applications.

The Metal Matrix and Ceramic Matrix Composite Coordination Groups continue to move forward toward the first release of their respective volumes. An additional highlight of the meeting was the Statistics Workshop on Regression Analysis by Dr. Mark Vangel.

Revisions of all three polymer matrix composite volumes, including a major reorganization of the guidelines volume, were released in Dec. 1997. The latest version of the handbook can be downloaded from the handbook homepage.

The next MMC meeting is scheduled for the week of 17 March 1997 in Dayton, OH. The next PMC/CMC meeting will be in Tucson, AZ, 14–17 April 1997. All three coordination groups will meet in conjunction with ASTM Committee D-30 in Williamsburg, VA, 7–12 Sept. 1997.

Additional information on the handbook and related activities can be found at http://www.udel.edu/army/.
RECENT COMPOSITES PUBLICATIONS

American Society for Composites Proceedings Published

Proceedings of the American Society for Composites: Eleventh Technical Conference

Now published, Proceedings of the American Society for Composites, 11th Technical Conference, contains over 1,100 pages of original information by composites materials specialists from the United States, Japan, Canada, and other countries. Advances in all types of composite materials were reported: polymer-matrix, metal-matrix (including titanium-matrix), and ceramic-matrix composites.

Edited by Dr. W. Steve Johnson, Georgia Institute of Technology, these 100 reports provide coverage on the materials, processes, performance, and applications of composite materials.

Topics in this collection include:

• Design & Analysis
• Damage Mechanics & Tolerance
• PMC Durability
• Micromechanics
• Compressive Behavior
• Polymers & Fibers
• Functionally Graded Composites
• Textile Composites
• Joints
• Constituent Materials
• Manufacturing Processes
• Applications.

Calendar on Composites

The following meetings may be of interest to researchers in the field of composite materials.

5–6 May 1997
Symposium on Effects of Products Quality on Structural Durability
St. Louis, Missouri
Contact: Richard C. Rice, Engineering Mechanics Department, Battelle, 505 King Avenue, Columbus, OH 43201-2693; ph: 614-424-4433; fax: 614-424-3457; e-mail: ricerich@battelle.org

6–8 May 1997
ASTM Committee D-30 Seventh Symposium on Composite Materials—Fatigue and Fracture
St. Louis, Missouri
Contact: Barbara Stafford, ASTM 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959; ph: 610-832-9621; fax: 610-832-9623; e-mail: bstaffor@local.astm.org

3–5 June 1997
International Conference on Fatigue of Composites, Eighth International Spring Meeting
Paris, France
Contact: Chantal Iannarelli, Congrès Scientifiques Services (C2S), 2, rue des Villarmains, BP 124, 92210 Saint Cloud, Cedex (France); ph: 33 (1) 47.71.90.04; fax: 33 (1) 47.71.90.05

8–11 June 1997
Thermal Stresses ’97. The Second International Symposium on Thermal Stresses and Related Topics
Rochester, New York.
Contact: Dr. R. B. Hetnarski, James E. Gleason Professor of Mechanical Engineering, Rochester Institute of Technology, 76 Lomb Memorial Drive, Rochester, NY 14623-5604, USA; ph: 716-475-5788; fax: 716-475-7710; e-mail: TS97@rit.edu; or Prof. N. Noda, Department of Mechanical Engineering, Shizuoka University, 5-1 Johokochi 3 chome, Hamamatsu, 432, Japan; ph: 81-53-478-1026; fax: 81-53-474-7499; e-mail: tmnoda@eng.shizuoka.ac.jp

24–26 June 1997
29th National Symposium on Fatigue and Fracture Mechanics
Stanford, California
Contacts: Tina L. Panontin, NASA Ames Research Center, MS 2134, Moffett Field, CA 94035; ph: 415-604-6757; e-mail: tina.panontin@hq.nasa.gov; Sheri D. Sheppard, Mechanical Engineering Department, Stanford University, Stanford, CA 94305; ph: 415-725-1590; e-mail: sheppard@cdr.stanford.edu
© 1997 by the American Society for Testing and Materials

29 June–2 July 1997
The 1997 Joint ASME AMD/ASCE EMD Summer Meeting (McNU ’97)
Northwestern University
Contact: Wing Kam Liu, Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, IL 60208-3111; ph: 708-491-7094; fax: 708-491-3915; e-mail: McNU91@nwu.edu

6–11 July 1997
Fourth International Conference on Composites Engineering (ICCE-4)
Hawaii
Contact: Dr. David Hui, University of New Orleans, Department of Mechanical Engineering, New Orleans, LA 70148; ph: 504-280-6652; fax: 504-280-5539; e-mail: dxhme@uno.edu

14–18 July 1997
Eleventh International Conference on Composite Materials (ICCM-11)
Gold Coast, Australia
Contact: ICCM-11 Conference Office, RMIT Fishermens Bend GPO Box 2476V, Melbourne, Victoria, 3001, Australia; ph: +61 3 9647 3064; fax: +61 3 9647 3099; e-mail: acss@acro.rmit.edu.au; http://www.acss.aero.rmit.edu.au/ICCM-11

7–12 September 1997
ASTM Committee D-30 on High Modulus Fibers and Their Composites Meeting
St. Louis, Missouri
Contact: Katharine Morgan, ASTM, 100 Barr Harbor Dr., West Conshohocken, PA 19428; ph: (610) 832-9721; fax: (610) 832-9666; e-mail: kmorgan@local.astm.org

14–17 September 1997
The Third International Conference on Progress in Durability Analysis of Composite Systems (DURACOSYS 97)
Virginia Polytechnic Institute and State University
Contact: Ken Reifsnider, General Co-Chairman, Department of Engineering Science and Mechanics, 120 Patton Hall, Virginia Tech, Blacksburg, VA 24061-0219 USA; ph: 540-231-5316; fax: 540-231-9187; e-mail: mrl@vtvmr.cc.vt.edu
22–24 September 1997
First International Conference on Damage and Failure of Interfaces (DFI-1)
Vienna, Austria
Contact: Doz. Dr. H. P. Rossmanith, Institute of Mechanics, University of Technology Vienna, Wiedner Hauptstrasse 8-10/325, A-1040 Vienna, Austria; ph: 0043-1-58801-5514; fax: 0043-1-58758 63; e-mail: rossmanith@emch80.una.ac.at

6–8 October 1997
American Society for Composites, 12th Technical Conference on Composite Materials
Dearborn, Michigan
Contact: Ronald F. Gibson, Wayne State University, College of Engineering, 5050 Anthony Wayne Dr., Detroit, MI 48202; ph: 313-577-3861; fax: 313-577-5300; e-mail: gibson@eng.wayne.edu

28–31 October 1997
5th Japan International SAMPE Symposium and Exhibition (JISSE-5)
Tokyo, Japan
Contact: Prof. M. Yamabe, Materials System Research Laboratory, Kanazawa Institute of Technology, 7-1 Ohgigaoka Nonoichi Ishikawa 921, Japan; ph: +81 762 94 6703; fax: +81 762 94 0183; e-mail: yamabe @neptune.cisp.kanazawa-it.ac.jp

4–7 May 1998
ASTM Committee D-30 on High Modulus Fibers and Their Composites Meeting
Atlanta, Georgia
Contact: Katharine Morgan, ASTM, 100 Barr Harbor Dr., West Conshohocken, PA 19428; ph: (610) 832-9721; fax: (610) 832-9666; e-mail: kmorgan@local.astm.org

Fall 1998
American Society for Composites, 13th Technical Conference on Composite Materials
Contact: A Vizzini, University of Maryland, Department of Aerospace Engineering, College Park, MD 20742; ph: 301-405-1123; fax: 301-314-9775; e-mail: vizzini@eng.umd.edu

2–4 November 1998
ASTM Committee D-30 on High Modulus Fibers and Their Composites Meeting
Norfolk, Virginia
Contact: Katharine Morgan, ASTM, 100 Barr Harbor Dr., West Conshohocken, PA 19428; ph: (610) 832-9721; fax: (610) 832-9666; e-mail: kmorgan@local.astm.org

Send items for this calendar to:
Prof. M. W. Hyer Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0219; Ph: 540-231-5372; Fax: 540-231-4574; e-mail: hyerm@vt.edu
The Journal of Composites Technology & Research (JCTR) is a quarterly publication sponsored by ASTM technical committee D-30 on High Modulus Fibers and Their Composites, and E-8 on Fatigue and Fracture. Each published paper and technical note has been peer-reviewed. Papers and technical notes are open to brief written comments in the Discussion section of the Journal, which also includes authors’ written responses.

The Technical Editor may consider a paper submitted to the Journal as a Technical Note if: it gives a reasonably brief description of ongoing studies with or without providing interim, tentative data, and/or conclusions; it reports phenomena observed in the course of research requiring further study; it provides mathematical procedures for facilitating reduction and analysis of data; or it reports promising new materials prior to undertaking extensive research to determine their properties.

The decision as to whether a manuscript is published as a paper or a technical note resides with the Technical Editor.

The guidelines below describe our manuscript selection, peer review, revision, and publication processes. Following these guidelines will ensure expeditious handling of submitted material.

Submission

The name, mailing address, position, affiliation, and telephone and fax number of each author must be supplied in a cover letter. The submitting author is to provide the names, affiliations, addresses, and telephone numbers of five to six individuals who are qualified to review impartially the paper and the research leading to it, and who are not employed at the same institution or company as any of the authors. While these names may or may not be used for the review, we will add them to our pool of potential reviewers. Also, a statement is to be included that the paper has not been published and is not under consideration for publication elsewhere. All permissions for previously published material used in the paper must be submitted in writing at this time.

The submitting author must also affirm that all those listed as co-authors have agreed (a) to be listed and (b) to submit the manuscript to ASTM for publication.

Five copies of the manuscript with clear copies of each figure are required. Original art work and computer disks should accompany the final revision.

Manuscript Instructions*

Word Processing Instructions

The hard-copy text can be produced on any letter-quality printer. Text is to be printed double-spaced with left and right margins of 1 in. (25.4 mm) using left justification. New paragraphs are to be indented five spaces, and end-of-line returns are not to be used.

The revised manuscript is to be sent on a 5 1/4 in. (133 mm) or 3 1/2 in. (89 mm) disk preferably in WordPerfect 5.1, with the corresponding hard copies. ASTM can convert from other word-processing packages as well.

*For complete manuscript instructions, which include a sample manuscript, call Barbara Stafford, Administrative Assistant, ASTM Journals, 810/832-9621 or FAX 810/832-9635.

Abstract and Keywords

An abstract of 100–150 words and a list of 5–10 keywords that can be used to index the manuscript are required.

Trademarks

Commercialism is to be avoided by using generic terms whenever possible. Trademarks and trade names are to be capitalized if their use is unavoidable.

SI Units

Society policy requires the use of SI units in all publications (including figures and tables). If in.-lb. units must be used to describe materials and present test results, SI equivalents must follow in parentheses. (See ASTM Standard for Metric Practice E380 for further information on SI units.)

Figures

Each figure is to be simple and uncluttered. All illustrations are to be placed together at the end of the manuscript with a separate sheet of figure captions. Consecutive Arabic (not Roman) numerals are required. The size of type in illustrations must be large enough to be legible after reduction. All lettering, lines, symbols, and other marks must be drawn in black India ink on white paper. Computer graphics must be produced by a laser printer. Photographs must be high-contrast black and white. SCALE MARKERS MUST BE SHOWN ON ALL PHOTOMICROGRAPHS AND ALL FIGURES THAT ARE REPRESENTATIONS OF EQUIPMENT OR SPECIMENS.

Tables

All tables are to be placed together at the end of the manuscript preceding the illustrations. Tables are to be numbered in Arabic and are cited in numerical order in the text. It is better to use several small simple tables than one large, complex table.

References

References shall be cited in the text in numeric order. Type the numerical citation on the line, not as a superscript, and enclose in brackets. References should be listed together at the end of the paper in numeric order. They must contain enough information to allow a reader to consult the cited material with reasonable effort.

Copyright

ASTM Requires that the submitting author shall return our "Author Agreement" with the revised paper assigning copyright to ASTM. For U.S. government employees whose manuscript has been prepared as part of their official duties, it is understood that copyright in the United States is not transferrable.

Manuscript Review

Each new manuscript is sent to the Technical Editor for consideration. If the Technical Editor finds that the manuscript fits the
Two or more reviewers, selected by a member of the Editorial Board, review each paper for technical content, originality, logical conclusions, sound data, reproducibility of results, and clarity of presentation; two or more reviewers provide reviews of each technical note. Their comments are compiled and evaluated. The reviewers’ anonymous comments and any other comments from the Technical Editor or his designee are then returned to the author for revision.

The author must submit five copies of the revised manuscript with an annotated (highlighted) version of the paper indicating clearly where each revision has been made and identifying the reviewer’s comment to which the revision is responding. Changes in the text including all MANDATORY reviewers’ comments must be addressed explicitly on the “Authors’ Response Form” provided during revision, as well as any explanation why a change was not made.

The Technical Editor will evaluate all revised manuscripts and make the final decision regarding publication in the Journal. The Editor may (1) accept the revised manuscript for publication, (2) require further revision or explanation, or (3) reject the revised manuscript. A revised manuscript may be sent for re-evaluation to a reviewer who has found major flaws in the original manuscript.

Editorial Review by ASTM

Each accepted paper is edited by the ASTM staff for style, organization, and proper English usage. The edited manuscript is returned to the author before typesetting. The typeset page proof is also sent to the author and the Technical Editor for final review prior to printing.

If ASTM does not hear from the author by the time designated for return of the edited paper and/or page proof, ASTM will proceed with the publication process.

Book Reviews

ASTM receives books from other publishers requesting book reviews. The books are available to potential reviewers in exchange for publishable reviews. Book reviews are screened and edited by the Technical Editor and staff without peer review. Anyone interested in acting as a reviewer should contact Barbara Stafford at ASTM. Phone: (610) 832-9621.

Testing Forum and Tips

Anyone having interesting test tips should submit a brief description of such innovations to the Testing Forum. Such contributions are screened and edited by the Technical Editor and staff without peer review.
APPLICATION IS MADE FOR MEMBERSHIP IN ASTM:

<table>
<thead>
<tr>
<th>LAST NAME</th>
<th>FIRST NAME</th>
<th>INITIAL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AFFILIATION</th>
<th>FACILITY</th>
<th>STREET</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>P.O. BOX</th>
<th>CITY</th>
<th>STATE</th>
<th>ZIP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>PHONE</th>
<th>EXTENSION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FAX</th>
<th>E-MAIL</th>
<th>JOB TITLE</th>
</tr>
</thead>
</table>

NOTE: IF YOUR AFFILIATION IS A SUBSIDIARY, PLEASE IDENTIFY THE PARENT ORGANIZATION.

COMMITTEE APPLICATION REQUEST

THIS APPLICATION IS FOR SOCIETY MEMBERSHIP ONLY. A TECHNICAL COMMITTEE REQUIRES A SEPARATE APPLICATION. PLEASE SEND APPLICATIONS FOR THE FOLLOWING COMMITTEE(S):

- []

ENCLOSED IS PAYMENT. ALL CHECKS MADE PAYABLE TO ASTM IN U.S. FUNDS ON U.S. BANKS.

- []

OPTIONAL METHODS OF PAYMENT

<table>
<thead>
<tr>
<th>AMOUNT $</th>
<th>AMERICAN EXPRESS</th>
<th>MASTER CARD</th>
<th>VISA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ACCOUNT NO.</th>
<th>EXPIRATION DATE</th>
</tr>
</thead>
</table>

MAIL TO: ASTM ATTN: MEMBER SERVICES
Annual Administrative Fee $65.00†

Participation on ASTM Technical Committees Yes

Complete Set of Book of ASTM Standards (Vols. 1-72) $4,700.00 (Prepaid)†

Complete Sections at Member Price No Limit

Annual Subscription to ASTM STANDARDIZATION NEWS 1 Free

In addition you will also receive:

• Reduced Symposium Registration Fees
• Other Publications at Member Prices
• Advance Information about Standards & Activities

Membership year is January 1 to December 31. Fees are payable in advance and are not prorated. Membership will become effective upon payment of fees.

* Administrative fee payments made to ASTM are not tax deductible as charitable contributions for federal income tax purposes.

† Canadian Members – Please add 7% GST – Registration Number R129162244.

NOTE: Membership benefits are subject to change.