Cement, Concrete, and Aggregates

Subject Index

Volume 16, 1994

A

Accelerated curing
Crack counts in air-entrained and non-air-entrained concrete subjected to accelerated and fog-room curing (Gillott, JE and Czarnecki, B), Dec., 110

Accelerated sulfate attack
Accelerated sulfate attack on concrete in a hot climate (Wafa, FF), June, 31

Acrylics
Effect of curing on shrinkage and expansion of surface repair mortars (Durand, B and Mirza, J), June, 48

Aggregates
Construction materials made with coal combustion by-products (Wei, L, Naik, TR, and Golden, DM), June, 36
Effects of different cementing materials and curing on concrete scaling (Afrani, I and Rogers, C), Dec., 132

Alkali reaction
Limits of application of the ASTM C 227 mortar bar test. Comparison with two other standards on alkali aggregate reactivity (Ranc, R, Isabelle, H, Clément, JY, and Sorrentino, D), June, 63

B

Book reviews
Concrete Structure, Properties, and Materials, 2nd Edition by Mehta and Monteiro (Volkman), Dec., 186
Concrete Technology: Past, Present and Future by Mehta (Swamy), Dec., 188
International Conference on Corrosion Protection of Steel in Concrete by Swamy (Mehta), Dec., 187

Bottom ash
Construction materials made with coal combustion by-products (Wei, L, Naik, TR, and Golden, DM), June, 36

C

Calorimetry
Calorimetric study of cement blends containing fly ash, silica fume, and slag at elevated temperatures (Ma, W, Sample, D, Martin, R, and Brown, PW), Dec., 93

Capping methods
Effect of capping materials and procedures on the measured compressive strength of high-strength concrete (Lobo, CL, Mullings, GM, and Gaynor, RD), Dec., 173

Cement compounds
Mineral admixtures contribution to the development of heat of hydration and strength (Rahhal, VF and Batic, OR), Dec., 150

Cement content
Accelerated sulfate attack on concrete in a hot climate (Wafa, FF), June, 31

Cement mortars
Effect of size and hardness of sand particles and their proportions on the friction characteristics of cement mortars: a laboratory study (Kolias, S), Dec., 140

Cement paste caps
Effect of capping materials and procedures on the measured compressive strength of high-strength concrete (Lobo, CL, Mullings, GM, and Gaynor, RD), Dec., 173

Chemical attack
Accelerated sulfate attack on concrete in a hot climate (Wafa, FF), June, 31

Chloride
Effect of elevated curing temperature on the chloride permeability of high-strength lightweight concrete (Gjørv, OE, Tan, K, and Monteiro, PJM), June, 57
Influence of sulfate ions on chloride-induced reinforcement corrosion in portland and blended cement concretes (Al-Amoudi, OSB, Rasheeduzzafar, Maslehuddin, M, and Abduljauwad, SN), June, 3
Rapid chloride permeability testing of silica-fume concrete (Ozyildirim, C), June, 53

Compressive strength
Effect of capping materials and procedures on the measured compressive strength of high-strength concrete (Lobo, CL, Mullings, GM, and Gaynor, RD), Dec., 173
Effect of mold size and mold material on compressive strength measurement using concrete cylinders (Day, RL), Dec., 159
New nondestructive testing (NDT): torsion test to evaluate compressive strength in concrete structures (Di Maio, AA and Traversa, LP), June, 73
Strength measurement of concrete using different cylinder sizes: a statistical analysis (Day, RL), June, 21
Use of high volumes of Class C and Class F fly ash in concrete (Naik, TR, Ramme, BW, and Tews, JH), June, 12

Concrete
Hexavalent chromium in portland cement (Klemm, WA), June, 43

Concrete pavements
Influence of size and hardness of sand particles and their proportions on the friction characteristics of cement mortars: a laboratory study (Kolias, S), Dec., 140

Concrete prism test
Limits of application of the ASTM C 227 mortar bar test. Comparison with two other standards on alkali aggregate reactivity (Ranc, R, Isabelle, H, Clément, JY, and Sorrentino, D), June, 63

Corrosion
Laboratory measurements of corrosion activity of steel reinforcement in concrete using simple equipment (Wrobel, F), Dec., 100

Coulomb
Rapid chloride permeability testing of silica-fume concrete (Ozyildirim, C), June, 53

Crack counts
Crack counts in air-entrained and non-air-entrained concrete subjected to accelerated and fog-room curing (Gillott, JE and Czarnecki, B), Dec., 110
Durability
Use of control specimens in freezing and thawing testing of concrete (Rutherford, JH, Langan, BW, and Ward, MA), June, 78

Editorial
Is it time to re-think the C-1 and C-9 organization of standards committees related to the paste fraction of concrete? (Hooton, RD), June, 1

Use, misuse, and blind faith: ASTM test methods and guidance for dealing with alkali-silica reactivity (Hooton, RD), Dec., 91

Epoxies
Effect of curing on shrinkage and expansion of surface repair mortars (Durand, B and Mirza, J), June, 48

Expansion
Effect of curing on shrinkage and expansion of surface repair mortars (Durand, B and Mirza, J), June, 48

Field testing
Determination of water content of fresh concrete using a microwave oven (Nagi, M and Whiting, D), Dec., 125

Flatwork
Strength evaluation of in-situ concrete by rebound hammer and core testing (Ward, MA and Langan, BW), Dec., 181

Fly ash
Calorimetric study of cement blends containing fly ash, silica fume, and slag at elevated temperatures (Ma, W, Sample, D, Martin, R, and Brown, PW), Dec., 93

Construction materials made with coal combustion by-products (Wei, L, Naik, TR, and Golden, DM), June, 36

Proportioning of fly ash cement concrete mixes (Shashiprakash, SG, Nagaraj, TS, Raviraj, S, and Yenagi, BV), Dec., 104

Use of high volumes of Class C and Class F fly ash in concrete (Naik, TR, Ramme, BW, and Tews, JH), June, 12

Freeze-thaw resistance
Effects of different cementing materials and curing on concrete scaling (Afrani, I and Rogers, C), Dec., 132

Freezing
Use of control specimens in freezing and thawing testing of concrete (Rutherford, JH, Langan, BW, and Ward, MA), June, 78

Hexavalent chromium
Hexavalent chromium in portland cement (Klemm, WA), June, 43

High-performance concrete
Optimization of the composition of a high-performance concrete (Rougeron, P and Alticin, P-C), Dec., 115

High strength concretes
Effect of elevated curing temperature on the chloride permeability of high-strength lightweight concrete (Gjørv, OE, Tan, K, and Monteiro, PJM), June, 57

Hydraulic cement
Cement strength variations: defining the solution (Gebhardt, RF), Dec., 167

Instruments
Laboratory measurements of corrosion activity of steel reinforcement in concrete using simple equipment (Wrobel, P), Dec., 100

Lightweight concrete
Effect of elevated curing temperature on the chloride permeability of high-strength lightweight concrete (Gjørv, OE, Tan, K, and Monteiro, PJM), June, 57

Masonry
Construction materials made with coal combustion by-products (Wei, L, Naik, TR, and Golden, DM), June, 36

Microwave ovens
Determination of water content of fresh concrete using a microwave oven (Nagi, M and Whiting, D), Dec., 125

Mineral admixtures
Mineral admixtures contribution to the development of heat of hydration and strength (Rahhal, VF and Batic, OR), Dec., 150

Mix proportioning
Proportioning of fly ash cement concrete mixes (Shashiprakash, SG, Nagaraj, TS, Raviraj, S, and Yenagi, BV), Dec., 104

Mold material
Effect of mold size and mold material on compressive strength measurement using concrete cylinders (Day, RL), Dec., 159

Strength measurement of concrete using different cylinder sizes: a statistical analysis (Day, RL), June, 21

Mortar bar tests
Limits of application of the ASTM C 227 mortar bar test. Comparison with other standards on alkali aggregate reactivity (Ranc, R, Isabelle, H, Clément, JY, and Sorrentino, D), June, 63

Mortars
Effect of curing on shrinkage and expansion of surface repair mortars (Durand, B and Mirza, J), June, 48

Nondestructive testing (NDT)
New nondestructive testing (NDT): torsion test to evaluate compressive strength in concrete structures (Di Maio, AA and Traversa, LP), June, 73

Strength evaluation of in-situ concrete by rebound hammer and core testing (Ward, MA and Langan, BW), Dec., 181

Optimization
Optimization of the composition of a high-performance concrete (Rougeron, P and Alticin, P-C), Dec., 115

Paving
Use of high volumes of Class C and Class F fly ash in concrete (Naik, TR, Ramme, BW, and Tews, JH), June, 12

Permeability
Rapid chloride permeability testing of silica-fume concrete (Ozyildirim, C), June, 53

Portland cement
Cement strength variations: defining the solution (Gebhardt, RF), Dec., 167

Hexavalent chromium in portland cement (Klemm, WA), June, 43

Influence of sulfate ions on chloride-induced reinforcement corrosion in portland and blended cement concretes (Al-Amoudi, OSB, Rasheeduzzafar, Maslehdin, M, and Abduljauwad, SN), June, 3

Mineral admixtures contribution to the development of heat of hydration and strength (Rahhal, VF and Batic, OR), Dec., 150
Reinforcement corrosion
Influence of sulfate ions on chloride-induced reinforcement corrosion in portland and blended cement concretes (Al-Amoudi, OSB, Rasheeduzzafar, Maslehuddin, M, and Abduljauwad, SN), June, 3

S

Scaling
Effects of different cementing materials and curing on concrete scaling (Afrani, I and Rogers, C), Dec., 132

Silica fume
Calorimetric study of cement blends containing fly ash, silica fume, and slag at elevated temperatures (Ma, W, Sample, D, Martin, R, and Brown, PW), Dec., 93

Optimization of the composition of a high-performance concrete (Rougeron, P and Al'tcin, P-C), Dec., 115

Skid resistance
Influence of size and hardness of sand particles and their proportions on the friction characteristics of cement mortars: a laboratory study (Kolias, S), Dec., 140

Slags
Calorimetric study of cement blends containing fly ash, silica fume, and slag at elevated temperatures (Ma, W, Sample, D, Martin, R, and Brown, PW), Dec., 93

Statistical analysis
Strength measurement of concrete using different cylinder sizes: a statistical analysis (Day, RL), June, 21

Steel reinforcement
Laboratory measurements of corrosion activity of steel reinforcement in concrete using simple equipment (Wrobel, P), Dec., 100

Strain control
Crack counts in air-entrained and non-air-entrained concrete subjected to accelerated and fog-room curing (Gillott, JE and Czarniecki, B), Dec., 110

Strength
Cement strength variations: defining the solution (Gebhardt, RF), Dec., 167

Proportioning of fly ash cement concrete mixes (Shashiprakash, SG, Nagaraj, TS, Raviraj, S, and Yenagi, BV), Dec., 104

Strength evaluation of in-situ concrete by rebound hammer and core testing (Ward, MA and Langan, BW), Dec., 181

Sulfates
Influence of sulfate ions on chloride-induced reinforcement corrosion in portland and blended cement concretes (Al-Amoudi, OSB, Rasheeduzzafar, Maslehuddin, M, and Abduljauwad, SN), June, 3

T-W

Thawing
Use of control specimens in freezing and thawing testing of concrete (Rutherford, JH, Langan, BW, and Ward, MA), June, 78

Torsion test
New nondestructive testing (NDT): torsion test to evaluate compressive strength in concrete structures (Di Maio, AA and Traversa, LP), June, 73

Water content
Determination of water content of fresh concrete using a microwave oven (Nagi, M and Whiting, D), Dec., 125