Cement, Concrete, and Aggregates
Index to Volume 5
1983

<table>
<thead>
<tr>
<th>Number</th>
<th>Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summer</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>Winter</td>
<td>152</td>
</tr>
</tbody>
</table>

A
Absorption: Lithological characteristics of concrete aggregates as related to durability (Robinson), Summer, 70
Aggregates: Discussion of “propo.rtioning of coarse aggregate for conventionally and gap-graded concrete” by D. O. Ehrenburg (Li and Ramakrishnan), Winter, 145
Air entraining agents: A method for analyzing void distribution in air-entrained concrete (Phillips), Winter, 128
Air entrainment: A method for analyzing void distribution in air-entrained concrete (Phillips), Winter, 128
Alkaline aggregates: Absorption: Alkali aggregate: Absorption: Alkali aggregate
Alkali aggregate reactions
Alkali aggregate reactivity of strained quartz as a constituent of concrete aggregate (Buck), Winter, 131
Study of alkali-silica reactivity tests to improve correlation and predictability for aggregates (Heck), Summer, 47
Alkalies: Alkali reactivity of strained quartz as a constituent of concrete aggregate (Buck), Winter, 131
Some opportunities to offset poor quality characteristics of high-alkali cement (Spellman), Summer, 73

B
Bibliographies: Quantitative X-ray diffraction analysis of cement and cinder: a bibliography (Struble), Summer, 62
Blown furnaces: Performance of blast-furnace slag cement (Cattaneo and Frigione), Summer, 42
Book review: Fundamentals of Portland Cement Concrete by Popovics (Head), Winter, 147
Bridge decks: Chloride penetration and the deterioration of concrete bridge decks (Cady and Weyers), Winter, 81
Bromine: Waste fuels program at the Mississippi Plant of St. Lawrence Cement, Inc. (MacDonald), Summer, 26
Buck, A. D.: Alkali reactivity of strained quartz as a constituent of concrete aggregate, Winter, 131
Bulk density: The Grace factor: a new tool for cement industry process control engineers (Welch), Summer, 35
Production technology of expanded clay aggregate gravel with bulk density below 300 kg/m³ (Yaksharov and Skiba), Winter, 134

By-products: Incorporation of low levels of by-products in portland cement and the effects on cement quality (Daugherity and Funnell), Summer, 14

C
Cady, P. D.: New method, Summer, 77
Cady, P. D. and Weyers, R. E.: Chloride penetration and the deterioration of concrete bridge decks, Winter, 81
Calcium carbonates: Potential use of catalysts in the cement industry (Safa, Daugherty, Mallow, Dziuk, and Funnell), Summer, 21
Capon, B. M., Layne, P. B., and Watson, D.: Use of unconventional fuels in cement manufacture, Summer, 30
Carette, G. G. and Malhotra, V. M.: Mechanical properties, durability, and drying shrinkage of portland cement concrete incorporating silica fume, Summer, 3
Carrasquillo, R. L. and Slate, F. O.: Microcracking and definition of failure of high- and normal-strength concretes, Summer, 54
Catalysts: Potential use of catalysts in the cement industry (Safa, Daugherty, Mallow, Dziuk, and Funnell), Summer, 21
Cattaneo, A. and Frigione, G.: Performance of blast-furnace slag cement, Summer, 42
Cement Reference Laboratory: CCRL management moves, Winter, 148
Cements: Performance of blast-furnace slag cement (Cattaneo and Frigione), Summer, 42
Quantitative X-ray diffraction analysis of cement and cinder: a bibliography (Struble), Summer, 62
Use of unconventional fuels in cement manufacture (Capon, Layne, and Watson), Summer, 30
Cherts: Study of alkali-silica reactivity tests to improve correlation and predictability for aggregates (Heck), Summer, 47
Clinkers: Quantitative X-ray diffraction analysis of cement and cinder: a bibliography (Struble), Summer, 62
Coefficient of variation: Variation of laboratory concrete flexural strength tests (Greer), Winter, 111
Compression tests: Effects of initial field curing on standard 28-day cylinder strengths (Meininger), Winter, 137
Compressive strength: Some opportunities to offset poor quality characteristics of high-alkali cement (Spellman), Summer, 73
Concrete pavements: Variation of laboratory concrete flexural strength tests (Greer), Winter, 111
Concretes: Chloride penetration and the deterioration of concrete bridge decks (Cady and Weyers), Winter, 81

Discussion of “proportioning of coarse aggregate for conventionally and gap-graded concrete” by D. O. Ehrenburg (Li and Ramakrishnan), Winter, 145
Effects of initial field curing on standard 28-day cylinder strengths (Meininger), Winter, 137
Evaluation of selected procedures for the rapid analysis of fresh concrete (Head, Phillippi, Howdyshell, and Lawrence), Winter, 88
Mechanical properties, durability, and drying shrinkage of portland cement concrete incorporating silica fume (Carette and Malhotra), Summer, 3
Method for analyzing void distribution in air-entrained concrete (Phillips), Winter, 128
Microcracking and definition of failure of high- and normal-strength concretes (Carrasquillo and Slate), Summer, 54
Variation of laboratory concrete flexural strength tests (Greer), Winter, 111
Curing: Effects of initial field curing on standard 28-day cylinder strengths (Meininger), Winter, 137

D-E
Daugherity, K. E. and Funnell, J. E.: Incorporation of low levels of by-products in portland cement and the effects on cement quality, Summer, 14
Daughterity, K. E.: see Safa, A. I., Daugherity, K. E., Mallow, W. A., Dziuk, J. J., and Funnell, J. E.
Decoking: Chloride penetration and the deterioration of concrete bridge decks (Cady and Weyers), Winter, 81
Dziuk, J. J.: see Safa, A. I., Daugherity, K. E., Mallow, W. A., Dziuk, J. J., and Funnell, J. E.
Energy: Incorporation of low levels of by-products in portland cement and the effects on cement quality (Daugherity and Funnell), Summer, 14
Energy dispersive: Chemical analysis of portland cement by energy dispersive X-ray fluorescence (Wheeler), Winter, 123
Expanded clay aggregates: Production technology of expanded clay aggregate gravel with bulk density below 300 kg/m³ (Yaksharov and Skiba), Winter, 134
Expansion: Study of alkali-silica reactivity tests to improve correlation and predictability for aggregates (Heck), Summer, 47

F-H
Fly ash: Some questions concerning ASTM standards and methods of testing fly ash for use with portland cement (Helmut), Winter, 103
Freezing: Lithological characteristics of concrete aggregates as related to durability (Robinson), Summer, 70

Frignone, G.: see Cattaneo, A. and Frignone, G.

Frost: Lithological characteristics of concrete aggregates as related to durability (Robinson), Summer, 70

Fuels: Use of unconventional fuels in cement manufacture (Capon, Layne, and Watson), Summer, 30

Funnell, J. E.

see Daugherty, K. E. and Funnell, J. E.

see Safa, A. I., Daugherty, K. E., Mallow, W. A., Dziuk, J. J., and Funnell, J. E.

Greer, W. C., Jr.: Variation of laboratory concrete flexural strength tests, Winter, 111


Head, W. J.: Review of Fundamentals of Portland Cement Concrete by Popovics, Winter, 147

Heck, W. J.: Study of alkali-silica reactivity tests to improve correlation and predictability for aggregates, Summer, 47

Hedstrom, E. G.: Award of Merit, Winter, 148

Helmuth, R.: Some questions concerning ASTM standards and methods of testing fly ash for use with portland cement, Winter, 103

High strength concretes: Microcracking and definition of failure of high- and normal-strength concretes (Carrasquillo and Slate), Summer, 54


K-M

Kilns

Use of unconventional fuels in cement manufacture (Capon, Layne, and Watson), Summer, 30

Waste fuels program at the Mississauga Plant of St. Lawrence Cement, Inc. (MacDonald), Summer, 26

Lawrence, D.: see Head, W. J., Phillippi, H. M., Howdyshell, P. A., and Lawrence, D.

Layne, P. B.: see Capon, B. M., Layne, P. B., and Watson, D.

Lead (metal): Waste fuels program at the Mississauga Plant of St. Lawrence Cement, Inc. (MacDonald), Summer, 26

Limestone: Potential use of catalysts in the cement industry (Safa, Daugherty, Mallow, Dziuk, and Funnell), Summer, 21

Li, S-T. and Ramakrishnan, V.: Discussion of "proportioning of coarse aggregate for conventionally and gap-graded concrete" by D. O. Ehrenburg, Winter, 145

MacDonald, L. P.: Waste fuels program at the Mississauga Plant of St. Lawrence Cement, Inc. (MacDonald), Summer, 26

Malhotra, V. M.: see Carrete, G. G. and Malhotra, V. M.

Mallow, W. A.: see Safa, A. I., Daugherty, K. E., Mallow, W. A., Dziuk, J. J., and Funnell, J. E.

Matselinsky, R. N., Rogatin, Y. A., and Spann, L. S.:

Efficient large panel roofing, Winter, 142

Meiinger, R. C.: Effects of initial field curing on standard 28-day cylinder strengths, Winter, 137

Mistletoe content: Evaluation of selected procedures for the rapid analysis of fresh concrete (Head, Philippsi, Howdyshell, and Lawrence), Winter, 88

Petrography: Alkali reactivity of strained quartz as a constituent of concrete aggregate (Buck), Winter, 131

Philleo, R. E.: A method for analyzing void distribution in air-entrained concrete, Winter, 128


Poison ratio: Microcracking and definition of failure of high- and normal-strength concretes (Carrasquillo and Slate), Summer, 54

Portland cements

Incorporation of low levels of by-products in portland cement and the effects on cement quality (Daugherty and Funnell), Summer, 14

Mechanical properties, durability, and drying shrinkage of portland cement concrete incorporating silica fume (Carrette and Malhotra), Summer, 3

Some opportunities to offset poor quality characteristics of high-alkali cement (Spellman), Summer, 73

Some questions concerning ASTM standards and methods of testing fly ash for use with portland cement (Helmuth), Winter, 103

Precast concrete: Efficient large panel roofing (Matselinsky, Rogatin, and Spann), Winter, 142

Prestressing: Efficient large panel roofing (Matselinsky, Rogatin, and Spann), Winter, 142

Proportioning: Discussion of "proportioning of coarse aggregate for conventionally and gap-graded concrete" by D. O. Ehrenburg (Li and Ramakrishnan), Winter, 145

R-S

Ramakrishnan, V.: see Li, S-T and Ramakrishnan, V.

Robinson, R. F.: Lithological characteristics of concrete aggregates as related to durability, Summer, 70

Rogatin, Y. A.: see Matselinsky, R. N., Rogatin, Y. A., and Spann, L. S.

Roofing: Efficient large panel roofing (Matselinsky, Rogatin, and Spann), Winter, 142

Safa, A. I., Daugherty, K. E., Mallow, W. A., Dziuk, J. J., and Funnell, J. E.: Potential use of catalysts in the cement industry, Summer, 21

Silica: Mechanical properties, durability, and drying shrinkage of portland cement concrete incorporating silica fume (Carrette and Malhotra), Summer, 3

Skiba, B. V.: see Yaksharov, O. J. and Skiba, B. V.

Slate, F. O.: see Carrasquillo, R. L. and Slate, F. O.

Spellman, L. U.: Some opportunities of offset poor quality characteristics of high-alkali cement, Summer, 73

Spann, L. S.: see Matselinsky, R. N., Rogatin, Y. A. and Spann, L. S.

Standards: Some questions concerning ASTM standards and methods of testing fly ash for use with portland cement (Helmuth), Winter, 103

Statistical analysis: Evaluation of selected procedures for the rapid analysis of fresh concrete (Head, Phillippi, Howdyshell, and Lawrence), Winter, 88


Sulfate resisting cements: Performance of blast-furnace slag cement (Cattaneo and Frignone), Summer, 42

T-Y

Thermal expansion: Production technology of expanded clay aggregate gravel with bulk density below 300 kg/m³ (Yaksharov and Skiba), Winter, 134

Trends: The Grace factor: a new tool for cement industry process control engineers (Welch), Summer, 35

Values: The Grace factor: a new tool for cement industry process control engineers (Welch), Summer, 35

Watson, D.: see Capon, B. M., Layne, P. B., and Watson, D.

Wave lengths: Chemical analysis of portland cement by energy dispersive X-ray fluorescence (Wheeler), Winter, 123


Weyers, R. E.: see Cady, P. D. and Weyers, R. E.

Wheeler, B. D.: Chemical analysis of portland cement by energy dispersive X-ray fluorescence, Winter, 123

Whiting, D. A.: Award, Summer, 77

X-ray fluorescence: Chemical analysis of portland cement by energy dispersive X-ray fluorescence (Wheeler), Winter, 123

Yaksharov, O. J. and Skiba, B. V.: Production technology of expanded clay aggregate gravel with bulk density below 300 kg/m³, Winter, 134