Cement, Concrete, and Aggregates
Index to Volume 11
1989

<table>
<thead>
<tr>
<th>Number</th>
<th>Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summer</td>
<td>3-80</td>
</tr>
<tr>
<td>2</td>
<td>Winter</td>
<td>81-132</td>
</tr>
</tbody>
</table>

A


Admixtures
- Testing and Evaluation of a Novel Melamine-Based Superplasticizer in Concrete (Lahalih, Dairanieh, Absi-Halabi, and Ali), Summer, 15
- Effect of Different Admixtures on the Strength of Sulphur Concrete (Czarnecki and Gillott), Winter, 109.

Aggregate
- NA2SO4 Soundness Test Evaluation (Sheftick), Summer, 73.
- Drying Shrinkage of Glass Fiber Reinforced Concrete (AI-Obaid), Winter, 119.

Air content
- Behavior of Cement-Reduced and "Flowing" Fresh Concretes Containing Conventional Water-Reducing and "Second-Generation" High-Range Water-Reducing Admixtures (Whiting and Dziedzic), Summer, 30
- Some Recent Problems with Air-Entrained Concrete (Hover), Summer, 67
- Air-entrained concrete: Some Recent Problems with Air-Entrained Concrete (Hover), Summer, 67
- Air-entrained voids: The Morphology of Air-Entrained Voids at an Early Age (Rashed, Monteiro, Williamson, and Bastacky), Winter, 126.

Alitcen, P.-C.: see Asselanis, J. G., Alitcin, P.-C., and Mehta, P. K.

Alitcin, P.-C.: see Asselanis, J. G., Alitcin, P.-C., and Mehta, P. K.


Al-Obaid, Y. F.: Drying Shrinkage of Glass Fiber Reinforced Concrete, Winter, 119.

Asselanis, J. G., Alitcin, P.-C., and Mehta, P. K.: Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strength Concrete, Summer, 80

B

Bastacky, J.: see Rashed, A. I., Monteiro, P. J. M., Williamson, R. B., and Bastacky, J.


Bleeding: Behavior of Cement-Reduced and "Flowing" Fresh Concretes Containing Conventional Water-Reducing and "Second-Generation" High-Range Water-Reducing Admixtures (Whiting and Dziedzic), Summer, 30


Carino, N. J. and Tank, R. C.: Statistical Characteristics of New Pin Penetration Test, Winter, 100

Cement mortars: A Damage Model for Sulfate Attack of Cement Mortars (Ouyang), Winter, 92.

Chemical admixtures: Another Look at the Portland Cement/Chemical Admixture Incompatibility Problem (Dodson and Hayden), Summer, 52

Chern, J.-C.: see Bazant, Z. P., Chern, J.-C., and Wu, Y.-G.

Chung, H.-W.: On Testing of Very Short Concrete Specimens, Summer, 40

Coarse aggregate: Freeze-Thaw Testing of Coarse Aggregate in Concrete: Procedures Used by Michigan Department of Transportation and Other Agencies (Vogler and Grove), Summer, 57

Compressive strength: Statistical Characteristics of New Pin Penetration Test (Carino and Tank), Winter, 100

Compressive tests: On Testing of Very Short Concrete Specimens (Chung), Summer, 40

Concrete
- Basic Creep Formula for Aging Concrete: Sinh-Double Power Law (Bazant, Chern, and Wu), Winter, 85
- Statistical Characteristics of New Pin Penetration Test (Carino and Tank), Winter, 121
- Properties of Concrete at an Early Age (Carino, Jennings, and Snell), Winter, 129

Concrete aggregate: Freeze-Thaw Testing of Coarse Aggregate in Concrete: Procedures Used by Michigan Department of Transportation and Other Agencies (Vogler and Grove), Summer, 57

Concrete strength
- On Testing of Very Short Concrete Specimens (Chung), Summer, 40
- Effect of Different Admixtures on the Strength of Sulphur Concrete (Czarnecki and Gillott), Winter, 109.

Cracking: Observations of Healing of Cracks in High-Strength Lightweight Concrete (Mor, Monteiro, and Hester), Winter, 121.

Creep: Basic Creep Formula for Aging Concrete: Sinh-Double Power Law (Bazant, Chern, and Wu), Winter, 85

Curing: Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strength Concrete (Asselanis, Aitcin, and Mehta), Summer, 80

Cyclic loading: Observations of Healing of Cracks in High-Strength Lightweight Concrete (Mor, Monteiro, and Hester), Winter, 121.


D

Dairanieh, I. S.: see Lahalih, S. M., Dairanieh, I. S., Absi-Halabi, M., and Ali, A. M.

Dodson, V. H. and Hayden, T. D.: Another Look at the Portland Cement/Chemical Admixture Incompatibility Problem, Summer, 52

Drill core analysis: On Testing of Very Short Concrete Specimens (Chung), Summer, 40

Durability
- Durability of Concrete under Simulated Arctic Conditions (Moukwa, Aitcin, and Regourd), Summer, 45
- NA2SO4 Soundness Test Evaluation (Sheftick), Summer, 73
- Dziedzic, W.: see Whiting, D. and Dziedzic, W.

E

Early age concrete: Properties of Concrete at an Early Age (Carino, Jennings, and Snell), Winter, 129.

Elastic modulus: Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strength Concrete (Asselanis, Aitcin, and Mehta), Summer, 80

Entrained air: Some Recent Problems with Air-Entrained Concrete (Hover), Summer, 67

False set: Another Look at the Portland Cement/Chemical Admixture Incompatibility Problem (Dodson and Hayden), Summer, 52

Copyright © 1989 by ASTM International

www.astm.org
Freeze-thaw testing: Freeze-Thaw Testing of Coarse Aggregate in Concrete: Procedures Used by Michigan Department of Transportation and Other Agencies (Vogler and Grove), Summer, 57

G

Gel space ratio: A Damage Model for Sulfate Attack of Cement Mortars (Ouyang), Winter, 92.

Gillott, J. E.: see Czarnecki, B. and Gillott, M. E.

Glass fiber: Drying Shrinkage of Glass Fiber Reinforced Concrete (Al-Ohaid), Winter, 119.

Grove, G. H.: see Vogler, R. H. and Grove, G. H.

H-J

Hayden, T. D.: see Dodson, V. H. and Hayden, T. D.

Hester, W. T.: see Mor, A., Monteiro, P. J. M., and Hester, W. T.

High-Range Water Reducer: Behavior of Cement-Reduced and “Flowing” Fresh Concretes Containing Conventional Water-Reducing “Second-Generation” High-Range Water-Reducing Admixtures (Whiting and Dziedzic), Summer, 30

High-strength concrete: Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strength Concrete (Asselanis, Aitcin, and Mehta), Summer, 23

Hover, K. C.: Some Recent Problems with Air-Entrained Concrete, Summer, 67


Johnston, C. D.: Effects on Flexural Performance of Sawing Plain Concrete and of Sawing and Other Methods of Altering the Degree of Fiber Alignment in Fiber-Reinforced Concrete, Summer, 23

K

Knab, L. I. and Spring, C. B.: Evaluation of Test Methods for Measuring the Bond Strength of Portland Cement Based Repair Materials to Concrete, Summer, 3

L


M

Mehta, P. K.: see Asselanis, J. G., Aitcin, P.-C., and Mehta, P. K.

Microstructure

Durability of Concrete under Simulated Arctic Conditions (Moukwa, Aitcin, and Regourd), Summer, 45.

The Morphology of Air-Entrained Voids at an Early Age (Rashed, Monteiro, Williamson, and Bastacky), Winter, 126.

Properties of Concrete at an Early Age (Carino, Jennings, and Snell), Winter, 129.

Monteiro, P. J. M.: see Mor, A., Monteiro, P. J. M., and Hester, W. T.


Mor, A., Monteiro, P. J. M., and Hester, W. T.: Observations of Healing of Cracks in High-Strength Lightweight Concrete, Winter, 121.

Moukwa, M., Aitcin, P.-C., and Regourd, M.: Durability of Concrete under Simulated Arctic Conditions, Summer, 45

P-Q

Patching: Evaluation of Test Methods for Measuring the Bond Strength of Portland Cement Based Repair Materials to Concrete (Knab and Spring), Summer, 3

Penetration test: Statistical Characteristics of New Pin Penetration Test (Carino and Tank), Winter, 100

Portland cement

Another Look at the Portland Cement/Chemical Admixture Incompatibility Problem (Dodson and Hayden), Summer, 52

Evaluation of Test Methods for Measuring the Bond Strength of Portland Cement Based Repair Materials to Concrete (Knab and Spring), Summer, 3

R


Regourd, M.: see Moukwa, M., Aitcin, P.-C., and Regourd, M.

S

Scanning electron microscope: The Morphology of Air-Entrained Voids at an Early Age (Rashed, Monteiro, Williamson, and Bastacky), Winter, 126.

Seawater: Durability of Concrete under Simulated Arctic Conditions (Moukwa, Aitcin, and Regourd), Summer, 45

Sheftick, W.: NA2SO4 Soundness Test Evaluation, Summer, 73

Shrinkage: Drying Shrinkage of Glass Fiber Reinforced Concrete (Al-Ohaid), Winter, 119


Soundness: NA2SO4 Soundness Test Evaluation (Sheftick), Summer, 73

Spring, C. B.: see Knab, L. I. and Spring, C. B.

Sulfate attack: A Damage Model for Sulfate Attack of Cement Mortars (Ouyang), Winter, 92.

Sulfonated resins: Testing and Evaluation of a Novel Melamine-Based Superplasticizer in Concrete (Lahalih, Dairanieh, Abi-Halabi, and Ali), Summer, 15

Superplasticizers: Testing and Evaluation of a Novel Melamine-Based Superplasticizer in Concrete (Lahalih, Dairanieh, Abi-Halabi, and Ali), Summer, 15

T

Tank, R. C.: see Carino, N. J. and Tank, R. C.

U-V

Viscoelasticity: Basic Creep Formula for Aging Concrete: Singh-Doubler Power Law (Bazant, Chern, and Wu), Winter, 85

Vogler, R. H. and Grove, G. H.: Freeze-Thaw Testing of Coarse Aggregate in Concrete: Procedures Used by Michigan Department of Transportation and Other Agencies, Summer, 57

W-Z

Whiting, D. and Dziedzic, W.: Behavior of Cement-Reduced and “Flowing” Fresh Concretes Containing Conventional Water-Reducing and “Second-Generation” High-Range Water-Reducing Admixtures, Summer, 30

Williamson, R. B.: see Rashed, A. I., Monteiro, P. J. M., Williamson, R. B., and Bastacky, J.

Wu, Y.-G.: see Bazant, Z. P., Chern, J.-C., and Wu, Y.-G.